IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003335.html
   My bibliography  Save this article

A numerical study of bio-inspired wingtip modifications of modern wind turbines

Author

Listed:
  • RahnamayBahambary, Khashayar
  • Kavian-Nezhad, Mohammad Reza
  • Komrakova, Alexandra
  • Fleck, Brian A.

Abstract

In this study, we propose an efficient turbine retrofit based on the use of bio-inspired winglets to increase the power production of a wind turbine. To assess the capability of the modified wingtips, we perform the steady-state Reynolds Averaged Navier–Stokes simulations of a DTU 10 MW wind turbine using ANSYS Fluent. The addition of this novel retrofit, inspired by the world’s heaviest soaring bird, the Andean condor, aims to increase the power output of a wind turbine while requiring only a modest capital investment. The results indicate that the addition of this retrofit leads to an increase of 9.69% in power production (average of four cases of 8, 9, 10, and 11 m/s). In addition to examining power production, the study also investigates the load distribution on the blade and the flow structures at the blade tip. The results illustrate that the winglets significantly affect the wingtip’s vortical structures, leading to an overall increase of 8.5 % in the axial loading along the span. We also show that the presence of the winglet affects the velocity recovery at the wake, leading to a more compact velocity recovery in the wake.

Suggested Citation

  • RahnamayBahambary, Khashayar & Kavian-Nezhad, Mohammad Reza & Komrakova, Alexandra & Fleck, Brian A., 2024. "A numerical study of bio-inspired wingtip modifications of modern wind turbines," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003335
    DOI: 10.1016/j.energy.2024.130561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.