IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp692-704.html
   My bibliography  Save this article

Numerical study of the flow field around hydrokinetic turbines with winglets on the blades

Author

Listed:
  • Barbarić, Marina
  • Batistić, Ivan
  • Guzović, Zvonimir

Abstract

Design methods and concepts that can increase the energy conversion efficiency of marine and river current turbines are of great importance for the development and wider utilization of this emerging renewable energy technology. This work is aimed to improve hydrodynamic performances of the hydrokinetic turbines to get as close as possible to the theoretical energy conversion efficiency limitation of 59.3%, known as the Lanchester–Betz–Joukowsky limit. The winglets are integrated at the turbine blade tips to reduce the effect of the tip vortex. The winglet design concept is adopted from the jet aircraft and adjusted to the hydrokinetic turbine application. The numerical investigation of the winglets impact on the hydrodynamic performances was performed using computational fluid dynamic (CFD). The results indicate that winglets subdue the strength of tip vortices, which is reflected through the increase in the power extracted. It has been confirmed that winglet height has a great influence on the power coefficient increase, which for higher winglets reaches the value above 50%. The analysis of the wake regions behind turbines pointed out that the turbines with winglets form stronger vortices in the far wake zone which may influence the back-flow turbine installed in row array.

Suggested Citation

  • Barbarić, Marina & Batistić, Ivan & Guzović, Zvonimir, 2022. "Numerical study of the flow field around hydrokinetic turbines with winglets on the blades," Renewable Energy, Elsevier, vol. 192(C), pages 692-704.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:692-704
    DOI: 10.1016/j.renene.2022.04.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farhan, A. & Hassanpour, A. & Burns, A. & Motlagh, Y. Ghaffari, 2019. "Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance," Renewable Energy, Elsevier, vol. 131(C), pages 1255-1273.
    2. Santiago Laín & Manuel A. Taborda & Omar D. López, 2018. "Numerical Study of the Effect of Winglets on the Performance of a Straight Blade Darrieus Water Turbine," Energies, MDPI, vol. 11(2), pages 1-24, January.
    3. Faez Hassan, Haydar & El-Shafie, Ahmed & Karim, Othman A., 2012. "Tidal current turbines glance at the past and look into future prospects in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5707-5717.
    4. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    5. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    6. Zhu, Bing & Sun, Xiaojing & Wang, Ying & Huang, Diangui, 2017. "Performance characteristics of a horizontal axis turbine with fusion winglet," Energy, Elsevier, vol. 120(C), pages 431-440.
    7. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    8. Marina Barbarić & Zvonimir Guzović, 2020. "Investigation of the Possibilities to Improve Hydrodynamic Performances of Micro-Hydrokinetic Turbines," Energies, MDPI, vol. 13(17), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    2. Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
    3. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    4. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    5. Shyuan Cheng & Yaqing Jin & Leonardo P. Chamorro, 2020. "Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms," Energies, MDPI, vol. 13(7), pages 1-13, April.
    6. Puertas-Frías, Carmen M. & Willson, Clinton S. & García-Salaberri, Pablo A., 2022. "Design and economic analysis of a hydrokinetic turbine for household applications," Renewable Energy, Elsevier, vol. 199(C), pages 587-598.
    7. Zhang, Zhihao & Kuang, Limin & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan & Duan, Lei & Tu, Jiahuang & Chen, Yaoran & Chen, Mingsheng, 2023. "Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines," Energy, Elsevier, vol. 281(C).
    8. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    9. Aju, Emmanuvel Joseph & Kumar, Devesh & Leffingwell, Melissa & Rotea, Mario A. & Jin, Yaqing, 2023. "The influence of yaw misalignment on turbine power output fluctuations and unsteady aerodynamic loads within wind farms," Renewable Energy, Elsevier, vol. 215(C).
    10. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    11. Yang, P. & Xiang, J. & Fang, F. & Pain, C.C., 2019. "A fidelity fluid-structure interaction model for vertical axis tidal turbines in turbulence flows," Applied Energy, Elsevier, vol. 236(C), pages 465-477.
    12. Xiancheng Wang & Hao Li & Junhua Chen & Chuhua Jiang & Lingjie Bao, 2023. "Research on Solidity of Horizontal-Axis Tidal Current Turbine," Energies, MDPI, vol. 16(8), pages 1-17, April.
    13. Petinrin, J.O. & Shaaban, Mohamed, 2015. "Renewable energy for continuous energy sustainability in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 967-981.
    14. Abdelsalam, Ali M. & El-Askary, W.A. & Kotb, M.A. & Sakr, I.M., 2021. "Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile," Energy, Elsevier, vol. 216(C).
    15. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    16. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    17. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    18. Yuan Li & Zengjin Xu & Zuoxia Xing & Bowen Zhou & Haoqian Cui & Bowen Liu & Bo Hu, 2020. "A Modified Reynolds-Averaged Navier–Stokes-Based Wind Turbine Wake Model Considering Correction Modules," Energies, MDPI, vol. 13(17), pages 1-19, August.
    19. Kumar, P. Madhan & Seo, Jeonghwa & Seok, Woochan & Rhee, Shin Hyung & Samad, Abdus, 2019. "Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 135(C), pages 277-287.
    20. K. Y. Lau & C. W. Tan, 2021. "Performance analysis of photovoltaic, hydrokinetic, and hybrid diesel systems for rural electrification in Malaysian Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6279-6300, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:692-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.