IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035508.html
   My bibliography  Save this article

Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine

Author

Listed:
  • Shen, Zhuang
  • Gong, Shuguang
  • Xie, Guilan
  • Lu, Haishan
  • Guo, Weiyu

Abstract

Double Darrieus Vertical Axis Wind Turbine (DD-VAWT) can efficiently capture wind energy at low tip speed ratios. In this work, the laws governing the effects of critical structural parameters, such as diameter of inner ring wind turbine, height of inner ring wind turbine, inner ring wind turbine blade airfoil chord length, and phase angle of inner and outer ring wind turbine, on the power performance and aerodynamic load are investigated. The power coefficient increases from 0.1670 to 0.2403 when the diameter of the inner ring wind turbine decreases from 1600 mm to 400 mm. The power coefficient increases from 0.1755 to 0.2135 when the height of the inner ring wind turbine increases from 600 mm to 1200 mm. The power coefficient increases from 0.1773 to 0.2135 when the chord length of the inner ring wind turbine blade airfoils increases from 0.15 m to 0.3 m. The power coefficient decreases from 0.2135 to 0.1976 when the phase angle of the inner and outer wind turbine is increased from 0° to 135°. Finally, based on Taguchi's experiments and grey correlation analysis, it is known that the most influential weight on the power coefficient and the maximum instantaneous torque coefficient is the airfoil chord length of the inner ring wind turbine blades, and the least is the phase angle of the inner and outer ring wind turbines. This work provides a reference for enhancing the DD-VAWT's performance.

Suggested Citation

  • Shen, Zhuang & Gong, Shuguang & Xie, Guilan & Lu, Haishan & Guo, Weiyu, 2024. "Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035508
    DOI: 10.1016/j.energy.2023.130156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    2. Sun, Xuejing & Zhu, Jianyang & Li, Zongjin & Sun, Guoxing, 2021. "Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers," Energy, Elsevier, vol. 215(PB).
    3. Zhu, Haitian & Hao, Wenxing & Li, Chun & Luo, Shuai & Liu, Qingsong & Gao, Chuang, 2021. "Effect of geometric parameters of Gurney flap on performance enhancement of straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 165(P1), pages 464-480.
    4. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    5. Cheng, Biyi & Yao, Yingxue, 2023. "Machine learning based surrogate model to analyze wind tunnel experiment data of Darrieus wind turbines," Energy, Elsevier, vol. 278(PA).
    6. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    7. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    8. Chowdhury, Abdullah Mobin & Akimoto, Hiromichi & Hara, Yutaka, 2016. "Comparative CFD analysis of Vertical Axis Wind Turbine in upright and tilted configuration," Renewable Energy, Elsevier, vol. 85(C), pages 327-337.
    9. Liu, Kan & Yu, Meilin & Zhu, Weidong, 2019. "Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study," Renewable Energy, Elsevier, vol. 140(C), pages 912-927.
    10. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    11. Zhang, Qiang & Bashir, Musa & Miao, Weipao & Liu, Qingsong & Li, Chun & Yue, Minnan & Wang, Peilin, 2023. "Aerodynamic analysis of a novel pitch control strategy and parameter combination for vertical axis wind turbines," Renewable Energy, Elsevier, vol. 216(C).
    12. Farzadi, Ramin & Bazargan, Majid, 2023. "3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode," Energy, Elsevier, vol. 278(PB).
    13. Maheshwari, Zeel & Kengne, Kamgang & Bhat, Omkar, 2023. "A comprehensive review on wind turbine emulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    14. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2016. "The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 111(C), pages 260-271.
    15. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    16. Lee, Young-Tae & Lim, Hee-Chang, 2015. "Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine," Renewable Energy, Elsevier, vol. 83(C), pages 407-415.
    17. Zhang, Zhihao & Kuang, Limin & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan & Duan, Lei & Tu, Jiahuang & Chen, Yaoran & Chen, Mingsheng, 2023. "Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines," Energy, Elsevier, vol. 281(C).
    18. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    19. Zhang, Yanfeng & Guo, Zhiping & Zhu, Xinyu & Li, Yuan & Song, Xiaowen & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Li, Qing’an, 2022. "Investigation of aerodynamic forces and flow field of an H-type vertical axis wind turbine based on bionic airfoil," Energy, Elsevier, vol. 242(C).
    20. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    21. Poguluri, Sunny Kumar & Lee, Hyebin & Bae, Yoon Hyeok, 2021. "An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine," Energy, Elsevier, vol. 219(C).
    22. Dong, Zuo & Wang, Xianjia & Zhu, Runzhou & Dong, Xuan & Ai, Xueshan, 2022. "Improving the accuracy of wind speed statistical analysis and wind energy utilization in the Ningxia Autonomous Region, China," Applied Energy, Elsevier, vol. 320(C).
    23. Ihor Shchur & Volodymyr Klymko & Shengbai Xie & David Schmidt, 2023. "Design Features and Numerical Investigation of Counter-Rotating VAWT with Co-Axial Rotors Displaced from Each Other along the Axis of Rotation," Energies, MDPI, vol. 16(11), pages 1-24, June.
    24. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    2. Lin Pan & Ze Zhu & Haodong Xiao & Leichong Wang, 2021. "Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(19), pages 1-29, October.
    3. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    4. Shubham, Shubham & Naik, Kevin & Sachar, Shivangi & Ianakiev, Anton, 2023. "Performance analysis of low Reynolds number vertical axis wind turbines using low-fidelity and mid-fidelity methods and wind conditions in the city of Nottingham," Energy, Elsevier, vol. 279(C).
    5. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    6. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    7. Shen, He & Ruiz, Alexis & Li, Ni, 2023. "Fast online reinforcement learning control of small lift-driven vertical axis wind turbines with an active programmable four bar linkage mechanism," Energy, Elsevier, vol. 262(PA).
    8. Qasemi, Keyhan & Azadani, Leila N., 2020. "Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector," Energy, Elsevier, vol. 202(C).
    9. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Su, Jie & Li, Yu & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan, 2021. "Aerodynamic performance assessment of φ-type vertical axis wind turbine under pitch motion," Energy, Elsevier, vol. 225(C).
    11. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    12. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    14. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    15. Krzysztof Kołodziejczyk & Radosław Ptak, 2022. "Numerical Investigations of the Vertical Axis Wind Turbine with Guide Vane," Energies, MDPI, vol. 15(22), pages 1-14, November.
    16. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower," Renewable Energy, Elsevier, vol. 135(C), pages 1144-1156.
    17. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    18. Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
    19. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    20. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.