IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp1001-1009.html
   My bibliography  Save this article

Aeroelastic coupling analysis of the flexible blade of a wind turbine

Author

Listed:
  • Mo, Wenwei
  • Li, Deyuan
  • Wang, Xianneng
  • Zhong, Cantang

Abstract

This paper presents an aeroelastic coupling analysis of the flexible blade of a large scale HAWT (horizontal axis wind turbine). To model the flexibility of the blade more accurately, ‘SE’ (super-element) is introduced to the blade dynamics model. The flexible blade is discretized into a MBS (multi-body system) using a limited number of SEs. The blade bending vibration and torsional deflection are both considered when calculating the aerodynamic loads; thus, the BEM (blade element momentum) theory used in this study is modified. In addition, the B–L (Beddoes–Leishman) dynamic stall model is integrated into the BEM-modified model to investigate the airfoil dynamic stall characteristics. The nonlinear governing equations of the constrained blade MBS are derived based on the theory of MBS dynamics coupling with the blade aerodynamics model. The time domain aeroelastic responses of the United States NREL (National Renewable Energy Laboratory) offshore 5-MW wind turbine blade are obtained. The simulation results indicate that blade vibration and deformation have significant effects on the aerodynamic loads, and the dynamic stall can cause more violent fluctuation for the blade aerodynamic loads compared with the steady aerodynamic model, which can considerably affect the blade fatigue load spectrum analysis and the fatigue life design.

Suggested Citation

  • Mo, Wenwei & Li, Deyuan & Wang, Xianneng & Zhong, Cantang, 2015. "Aeroelastic coupling analysis of the flexible blade of a wind turbine," Energy, Elsevier, vol. 89(C), pages 1001-1009.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:1001-1009
    DOI: 10.1016/j.energy.2015.06.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lin & Liu, Xiongwei & Renevier, Nathalie & Stables, Matthew & Hall, George M., 2014. "Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory," Energy, Elsevier, vol. 76(C), pages 487-501.
    2. Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
    3. Zhao, Xueyong & Maißer, Peter & Wu, Jingyan, 2007. "A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element," Renewable Energy, Elsevier, vol. 32(3), pages 532-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    2. Tang, Di & Bao, Shiyi & Luo, Lijia & Mao, Jianfeng & Lv, Binbin & Guo, Hongtao, 2017. "Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method," Energy, Elsevier, vol. 141(C), pages 2300-2313.
    3. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    4. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    5. Xue, Zhanpu & Wang, Wei & Fang, Liqing & Zhou, Jingbo, 2020. "Numerical simulation on structural dynamics of 5 MW wind turbine," Renewable Energy, Elsevier, vol. 162(C), pages 222-233.
    6. Chen, Bei & Hua, Xugang & Zhang, Zili & Nielsen, Søren R.K. & Chen, Zhengqing, 2021. "Active flutter control of the wind turbines using double-pitched blades," Renewable Energy, Elsevier, vol. 163(C), pages 2081-2097.
    7. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.
    8. Ju, Shen-Haw & Huang, Yu-Cheng & Huang, Yin-Yu, 2020. "Study of optimal large-scale offshore wind turbines," Renewable Energy, Elsevier, vol. 154(C), pages 161-174.
    9. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    10. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    11. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    12. Karbasian, Hamid Reza & Esfahani, Javad Abolfazli & Aliyu, Aliyu Musa & Kim, Kyung Chun, 2022. "Numerical analysis of wind turbines blade in deep dynamic stall," Renewable Energy, Elsevier, vol. 197(C), pages 1094-1105.
    13. Xu, Jin & Zhang, Lei & Li, Xue & Li, Shuang & Yang, Ke, 2020. "A study of dynamic response of a wind turbine blade based on the multi-body dynamics method," Renewable Energy, Elsevier, vol. 155(C), pages 358-368.
    14. Shukla, Vivek & Kaviti, Ajay Kumar, 2017. "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models," Energy, Elsevier, vol. 126(C), pages 766-795.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Di & Bao, Shiyi & Luo, Lijia & Mao, Jianfeng & Lv, Binbin & Guo, Hongtao, 2017. "Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method," Energy, Elsevier, vol. 141(C), pages 2300-2313.
    2. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    3. Chen, Bei & Hua, Xugang & Zhang, Zili & Nielsen, Søren R.K. & Chen, Zhengqing, 2021. "Active flutter control of the wind turbines using double-pitched blades," Renewable Energy, Elsevier, vol. 163(C), pages 2081-2097.
    4. Baniassadi, Amir & Shirinbakhsh, Mehrdad & Torabi, Farschad, 2017. "Multivariate optimization of off-grid wind turbines with variable demand - Case study of a remote commercial building," Renewable Energy, Elsevier, vol. 101(C), pages 1021-1029.
    5. Fan Zhang & Juchuan Dai & Deshun Liu & Linxing Li & Xin Long, 2019. "Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data," Energies, MDPI, vol. 12(3), pages 1-20, February.
    6. Zhang, Wenguang & Bai, Xuejian & Wang, Yifeng & Han, Yue & Hu, Yong, 2018. "Optimization of sizing parameters and multi-objective control of trailing edge flaps on a smart rotor," Renewable Energy, Elsevier, vol. 129(PA), pages 75-91.
    7. Xu, Jin & Zhang, Lei & Li, Xue & Li, Shuang & Yang, Ke, 2020. "A study of dynamic response of a wind turbine blade based on the multi-body dynamics method," Renewable Energy, Elsevier, vol. 155(C), pages 358-368.
    8. Haojie Kang & Bofeng Xu & Xiang Shen & Zhen Li & Xin Cai & Zhiqiang Hu, 2023. "Comparison of Blade Aeroelastic Responses between Upwind and Downwind of 10 MW Wind Turbines under the Shear Wind Condition," Energies, MDPI, vol. 16(6), pages 1-13, March.
    9. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    10. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    11. Shudong Leng & Yefeng Cai & Haisheng Zhao & Xin Li & Jiafei Zhao, 2024. "Study on the near Wake Aerodynamic Characteristics of Floating Offshore Wind Turbine under Combined Surge and Pitch Motion," Energies, MDPI, vol. 17(3), pages 1-16, February.
    12. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    13. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    14. Salehyar, Sara & Zhu, Qiang, 2015. "Aerodynamic dissipation effects on the rotating blades of floating wind turbines," Renewable Energy, Elsevier, vol. 78(C), pages 119-127.
    15. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2019. "Numerical Investigation of the Effect of Tower Dam and Rotor Misalignment on Performance and Loads of a Large Wind Turbine in the Atmospheric Boundary Layer," Energies, MDPI, vol. 12(7), pages 1-19, March.
    16. Peng, Chao & Zou, Jianxiao & Li, Yan & Xu, Hongbing & Li, Liying, 2017. "A novel composite calculation model for power coefficient and flapping moment coefficient of wind turbine," Energy, Elsevier, vol. 126(C), pages 821-829.
    17. Dai, Juchuan & Liu, Deshun & Wen, Li & Long, Xin, 2016. "Research on power coefficient of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 86(C), pages 206-215.
    18. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    19. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    20. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:1001-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.