IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4362-d1725706.html
   My bibliography  Save this article

Structure/Aerodynamic Nonlinear Dynamic Simulation Analysis of Long, Flexible Blade of Wind Turbine

Author

Listed:
  • Xiangqian Zhu

    (Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China
    State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, China)

  • Siming Yang

    (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150006, China)

  • Zhiqiang Yang

    (Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China
    State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, China)

  • Chang Cai

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

  • Lei Zhang

    (Goldwind Technology Co., Ltd., Beijing 100176, China)

  • Qing’an Li

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

  • Jin-Hwan Choi

    (Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea)

Abstract

To meet the requirements of geometric nonlinear modeling and bending–torsion coupling analysis of long, flexible offshore blades, this paper develops a high-precision engineering simplified model based on the Absolute Nodal Coordinate Formulation (ANCF). The model considers nonlinear variations in linear density, stiffness, and aerodynamic center along the blade span and enables efficient computation of 3D nonlinear deformation using 1D beam elements. Material and structural function equations are established based on actual 2D airfoil sections, and the chord vector is obtained from leading and trailing edge coordinates to calculate the angle of attack and aerodynamic loads. Torsional stiffness data defined at the shear center is corrected to the mass center using the axis shift theorem, ensuring a unified principal axis model. The proposed model is employed to simulate the dynamic behavior of wind turbine blades under both shutdown and operating conditions, and the results are compared to those obtained from the commercial software Bladed. Under shutdown conditions, the blade tip deformation error in the y-direction remains within 5% when subjected only to gravity, and within 8% when wind loads are applied perpendicular to the rotor plane. Under operating conditions, although simplified aerodynamic calculations, structural nonlinearity, and material property deviations introduce greater discrepancies, the x-direction deformation error remains within 15% across different wind speeds. These results confirm that the model maintains reasonable accuracy in capturing blade deformation characteristics and can provide useful support for early-stage dynamic analysis.

Suggested Citation

  • Xiangqian Zhu & Siming Yang & Zhiqiang Yang & Chang Cai & Lei Zhang & Qing’an Li & Jin-Hwan Choi, 2025. "Structure/Aerodynamic Nonlinear Dynamic Simulation Analysis of Long, Flexible Blade of Wind Turbine," Energies, MDPI, vol. 18(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4362-:d:1725706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Shuangxi & Li, Yilun & Chen, Weimin, 2021. "Analysis on dynamic interaction between flexible bodies of large-sized wind turbine and its response to random wind loads," Renewable Energy, Elsevier, vol. 163(C), pages 123-137.
    2. Gao, Rongzhen & Yang, Junwei & Yang, Hua & Wang, Xiangjun, 2023. "Wind-tunnel experimental study on aeroelastic response of flexible wind turbine blades under different wind conditions," Renewable Energy, Elsevier, vol. 219(P2).
    3. Amna Algolfat & Weizhuo Wang & Alhussein Albarbar, 2022. "Study of Centrifugal Stiffening on the Free Vibrations and Dynamic Response of Offshore Wind Turbine Blades," Energies, MDPI, vol. 15(17), pages 1-19, August.
    4. Wang, Lin & Liu, Xiongwei & Renevier, Nathalie & Stables, Matthew & Hall, George M., 2014. "Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory," Energy, Elsevier, vol. 76(C), pages 487-501.
    5. Wang, Xiangjun & Jiang, Lifeng & Amjad, Ali & Yang, Hua & Yang, Junwei, 2024. "Experimental investigation on Aeroelastic response of long flexible blades in turbulent flow," Applied Energy, Elsevier, vol. 375(C).
    6. Yewen Chen & Shuni Zhou & Chang Cai & Weilong Wang & Yuheng Hao & Teng Zhou & Xinbao Wang & Qingan Li, 2023. "Study on the Rotation Effect on the Modal Performance of Wind Turbine Blades," Energies, MDPI, vol. 16(3), pages 1-11, January.
    7. Wang, Yibo & Cai, Chang & Liao, Caicai & Hu, Zhiqiang & Zhang, Lei & Sun, Xiangyu & Zhong, Xiaohui & Li, Qing'an, 2025. "Aeroelastic stability analysis of large-scale wind turbine blades under different operating conditions based on system identification and Floquet theory," Energy, Elsevier, vol. 326(C).
    8. Xianyou Wu & Kai Feng & Qing’an Li, 2024. "A Numerical Method for the Dynamics Analysis of Blade Fracture Faults in Wind Turbines Using Geometrically Exact Beam Theory and Its Validation," Energies, MDPI, vol. 17(4), pages 1-18, February.
    9. Saravia, C. Martín & Gatti, Claudio D. & Ramirez, José M., 2017. "On the determination of the mechanical properties of wind turbine blades: Geometrical aspects of line based algorithms," Renewable Energy, Elsevier, vol. 105(C), pages 55-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bei & Hua, Xugang & Zhang, Zili & Nielsen, Søren R.K. & Chen, Zhengqing, 2021. "Active flutter control of the wind turbines using double-pitched blades," Renewable Energy, Elsevier, vol. 163(C), pages 2081-2097.
    2. Amna Algolfat & Weizhuo Wang & Alhussein Albarbar, 2023. "The Sensitivity of 5MW Wind Turbine Blade Sections to the Existence of Damage," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Lapa, Gabriel Vicentin Pereira & Gay Neto, Alfredo & Franzini, Guilherme Rosa, 2023. "Effects of blade torsion on IEA 15MW turbine rotor operation," Renewable Energy, Elsevier, vol. 219(P2).
    4. Zhang, Wenguang & Bai, Xuejian & Wang, Yifeng & Han, Yue & Hu, Yong, 2018. "Optimization of sizing parameters and multi-objective control of trailing edge flaps on a smart rotor," Renewable Energy, Elsevier, vol. 129(PA), pages 75-91.
    5. Shine Win Naung & Mohammad Rahmati & Htet Shine, 2025. "High-Fidelity Aeroelastic Analysis of a Wind Turbine Using a Nonlinear Frequency-Domain Solution Method," Energies, MDPI, vol. 18(5), pages 1-20, February.
    6. Haojie Kang & Bofeng Xu & Xiang Shen & Zhen Li & Xin Cai & Zhiqiang Hu, 2023. "Comparison of Blade Aeroelastic Responses between Upwind and Downwind of 10 MW Wind Turbines under the Shear Wind Condition," Energies, MDPI, vol. 16(6), pages 1-13, March.
    7. Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
    8. Tang, Di & Bao, Shiyi & Luo, Lijia & Mao, Jianfeng & Lv, Binbin & Guo, Hongtao, 2017. "Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method," Energy, Elsevier, vol. 141(C), pages 2300-2313.
    9. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    10. Xu, Jian & Wang, Longyan & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Yuan, Jianping & Tan, Andy C.C., 2024. "Deep learning enhanced fluid-structure interaction analysis for composite tidal turbine blades," Energy, Elsevier, vol. 296(C).
    11. Li, Zhiguo & Gao, Zhiying & Chen, Yongyan & Zhang, Liru & Wang, Jianwen, 2022. "A novel time-variant prediction model for megawatt flexible wind turbines and its application in NTM and ECD conditions," Renewable Energy, Elsevier, vol. 196(C), pages 1158-1169.
    12. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    13. Tahir Muhammad Naqash & Md. Mahbub Alam, 2025. "A State-of-the-Art Review of Wind Turbine Blades: Principles, Flow-Induced Vibrations, Failure, Maintenance, and Vibration Suppression Techniques," Energies, MDPI, vol. 18(13), pages 1-35, June.
    14. Wang, Xiangjun & Jiang, Lifeng & Amjad, Ali & Yang, Hua & Yang, Junwei, 2024. "Experimental investigation on Aeroelastic response of long flexible blades in turbulent flow," Applied Energy, Elsevier, vol. 375(C).
    15. Yang, Junwei & Meng, Lingting & Wang, Xiangjun & Yang, Hua, 2025. "Research on data assimilation approach of wind turbine airfoils in stall conditions," Renewable Energy, Elsevier, vol. 239(C).
    16. Cihan Çiftci & Ayşe Erdoğan & Mustafa Serdar Genç, 2023. "Investigation of the Mechanical Behavior of a New Generation Wind Turbine Blade Technology," Energies, MDPI, vol. 16(4), pages 1-20, February.
    17. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
    18. Win Naung, Shine & Rahmati, Mohammad & Farokhi, Hamed, 2021. "Nonlinear frequency domain solution method for aerodynamic and aeromechanical analysis of wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 66-81.
    19. Li, Zhiguo & Gao, Zhiying & Dai, Yuanjun & Wen, Caifeng & Zhang, Liru & Wang, Jianwen, 2023. "Unsteady aeroelastic performance analysis for large-scale megawatt wind turbines based on a novel aeroelastic coupling model," Renewable Energy, Elsevier, vol. 218(C).
    20. Rodriguez, Steven N. & Jaworski, Justin W., 2019. "Strongly-coupled aeroelastic free-vortex wake framework for floating offshore wind turbine rotors. Part 1: Numerical framework," Renewable Energy, Elsevier, vol. 141(C), pages 1127-1145.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4362-:d:1725706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.