IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp144-151.html
   My bibliography  Save this article

Effect of calcination temperature on the association between free NiO species and catalytic activity of Ni−Ce0.6Zr0.4O2 deoxygenation catalysts for biodiesel production

Author

Listed:
  • Jeon, Kyung-Won
  • Shim, Jae-Oh
  • Jang, Won-Jun
  • Lee, Da-We
  • Na, Hyun-Suk
  • Kim, Hak-Min
  • Lee, Yeol-Lim
  • Yoo, Seong-Yeun
  • Roh, Hyun-Seog
  • Jeon, Byong-Hun
  • Bae, Jong Wook
  • Ko, Chang Hyun

Abstract

In this study, a series of Ni−Ce0.6Zr0.4O2 catalysts, which were synthesized by co-precipitation followed by calcination at different temperatures, were applied for the deoxygenation of oleic acid. The physicochemical properties of the catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), H2 chemisorption, H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD), and X-ray photoelectron spectroscopy (XPS). The Ni−Ce0.6Zr0.4O2 catalyst calcined at 300 °C exhibited the highest conversion for oleic acid as well as selectivity for diesel-range compounds. It is predominantly related to the highest amount of free NiO species. In addition, the acidity of the catalyst significantly affected the selectivity and distribution of products.

Suggested Citation

  • Jeon, Kyung-Won & Shim, Jae-Oh & Jang, Won-Jun & Lee, Da-We & Na, Hyun-Suk & Kim, Hak-Min & Lee, Yeol-Lim & Yoo, Seong-Yeun & Roh, Hyun-Seog & Jeon, Byong-Hun & Bae, Jong Wook & Ko, Chang Hyun, 2019. "Effect of calcination temperature on the association between free NiO species and catalytic activity of Ni−Ce0.6Zr0.4O2 deoxygenation catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 131(C), pages 144-151.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:144-151
    DOI: 10.1016/j.renene.2018.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shim, Jae-Oh & Jeong, Dae-Woon & Jang, Won-Jun & Jeon, Kyung-Won & Jeon, Byong-Hun & Cho, Seung Yeon & Roh, Hyun-Seog & Na, Jeong-Geol & Ko, Chang Hyun & Oh, You-Kwan & Han, Sang Sub, 2014. "Deoxygenation of oleic acid over Ce(1–x)Zr(x)O2 catalysts in hydrogen environment," Renewable Energy, Elsevier, vol. 65(C), pages 36-40.
    2. Kwon, Kyung C. & Mayfield, Howard & Marolla, Ted & Nichols, Bob & Mashburn, Mike, 2011. "Catalytic deoxygenation of liquid biomass for hydrocarbon fuels," Renewable Energy, Elsevier, vol. 36(3), pages 907-915.
    3. Patel, Bhavish & Arcelus-Arrillaga, Pedro & Izadpanah, Arash & Hellgardt, Klaus, 2017. "Catalytic Hydrotreatment of algal biocrude from fast Hydrothermal Liquefaction," Renewable Energy, Elsevier, vol. 101(C), pages 1094-1101.
    4. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Han, Won-Bi & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases," Renewable Energy, Elsevier, vol. 79(C), pages 91-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    2. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    3. Hermida, Lilis & Abdullah, Ahmad Zuhairi & Mohamed, Abdul Rahman, 2015. "Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1223-1233.
    4. Castello, Daniele & Haider, Muhammad Salman & Rosendahl, Lasse Aistrup, 2019. "Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks," Renewable Energy, Elsevier, vol. 141(C), pages 420-430.
    5. del Río, Juan I. & Pérez, William & Cardeño, Fernando & Marín, James & Rios, Luis A., 2021. "Pre-hydrogenation stage as a strategy to improve the continuous production of a diesel-like biofuel from palm oil," Renewable Energy, Elsevier, vol. 168(C), pages 505-515.
    6. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Roh, Hyun-Seog & Son, In Hyuk & Lee, Seung Jae, 2016. "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application," Applied Energy, Elsevier, vol. 173(C), pages 80-91.
    7. Xiao, Chao & Fu, Qian & Liao, Qiang & Huang, Yun & Xia, Ao & Chen, Hao & Zhu, Xun, 2020. "Life cycle and economic assessments of biogas production from microalgae biomass with hydrothermal pretreatment via anaerobic digestion," Renewable Energy, Elsevier, vol. 151(C), pages 70-78.
    8. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    9. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    10. Pattanaik, Bhabani Prasanna & Misra, Rahul Dev, 2017. "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 545-557.
    11. Jeong, Dae-Woon & Jang, Won-Jun & Shim, Jae-Oh & Han, Won-Bi & Kim, Hak-Min & Lee, Yeol-Lim & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Optimization of a highly active nano-sized Pt/CeO2 catalyst via Ce(OH)CO3 for the water-gas shift reaction," Renewable Energy, Elsevier, vol. 79(C), pages 78-84.
    12. Huang, Xinghua & Dong, Shengfei & Yang, Xiaoyi, 2022. "Refining lipid for aviation biofuel at the molecular level," Renewable Energy, Elsevier, vol. 201(P1), pages 148-159.
    13. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    14. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:144-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.