IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v124y2018icp3-10.html
   My bibliography  Save this article

Enhancement of ethanol production from synthetic medium model of hydrolysate of macroalgae

Author

Listed:
  • Sayed, Walaa
  • Cabrol, Audrey
  • Abdallah, Rawa
  • Taha, Samir
  • Amrane, Abdeltif
  • Djelal, Hayet

Abstract

Among biomass materials available, macroalgae is a promising alternative to traditional energy crops. The absence of lignin, a high growth rate and a richness of fermentable sugars and nitrogen, are real gains for a competitive ethanol production. But the presence of salts can be an obstacle to obtain relevant performances. Experiments were carried out with a synthetic medium adjusted on algal hydrolysate composition in order to reduce resource limitations and variations of composition. The behavior of four yeast strains for ethanol production was investigated: Candida guilliermondii, Scheffersomyces stipitis, Kluyveromyces marxianus and Saccharomyces cerevisiae. Glucose, which is the most abundant sugar in the targeted algal hydrolysate (Ulva spp), was completely assimilated by all of the considered strains, even in the presence of salts at levels found in macroalgal hydrolysates (0.25 M of sodium chloride and 0.21 M of sulfate). The use of peptone as nitrogen source enhanced kinetics of consumption and production. For instance, the rate of ethanol production by S. cerevisiae in the presence of peptone was six times higher than that obtained using ammonium, 0.6 and 0.1 g L−1 h−1 respectively. In the presence of salts, the rates of glucose consumption and ethanol production were lowered for the considered strains, except for K. marxianus. Nevertheless, S. cerevisiae could be the most promising strain to valorize Ulva spp hydrolysate in bioethanol, in terms of ethanol produced (7.5–7.9 g L−1) whether in the presence or in absence of salts.

Suggested Citation

  • Sayed, Walaa & Cabrol, Audrey & Abdallah, Rawa & Taha, Samir & Amrane, Abdeltif & Djelal, Hayet, 2018. "Enhancement of ethanol production from synthetic medium model of hydrolysate of macroalgae," Renewable Energy, Elsevier, vol. 124(C), pages 3-10.
  • Handle: RePEc:eee:renene:v:124:y:2018:i:c:p:3-10
    DOI: 10.1016/j.renene.2017.10.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117310625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.10.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Chun-Min & Wu, Shu-Yii, 2016. "From biomass waste to biofuels and biomaterial building blocks," Renewable Energy, Elsevier, vol. 96(PB), pages 1056-1062.
    2. Mishra, Abhishek & Sharma, Ajay K. & Sharma, Sumit & Bagai, Rashmi & Mathur, Anshu S. & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Lignocellulosic ethanol production employing immobilized Saccharomyces cerevisiae in packed bed reactor," Renewable Energy, Elsevier, vol. 98(C), pages 57-63.
    3. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    4. John J. Milledge & Benjamin Smith & Philip W. Dyer & Patricia Harvey, 2014. "Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass," Energies, MDPI, vol. 7(11), pages 1-29, November.
    5. Mussatto, Solange I. & Machado, Ercília M.S. & Carneiro, Lívia M. & Teixeira, José A., 2012. "Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates," Applied Energy, Elsevier, vol. 92(C), pages 763-768.
    6. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mhatre, Apurv & Gore, Suhas & Mhatre, Akanksha & Trivedi, Nitin & Sharma, Manju & Pandit, Reena & Anil, Annamma & Lali, Arvind, 2019. "Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca," Renewable Energy, Elsevier, vol. 132(C), pages 742-751.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    2. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    3. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    4. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.
    5. Tedesco, S. & Daniels, S., 2018. "Optimisation of biogas generation from brown seaweed residues: Compositional and geographical parameters affecting the viability of a biorefinery concept," Applied Energy, Elsevier, vol. 228(C), pages 712-723.
    6. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    7. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    8. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    9. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    10. Irena Wojnowska-Baryła & Katarzyna Bernat & Magdalena Zaborowska, 2022. "Strategies of Recovery and Organic Recycling Used in Textile Waste Management," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    11. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    12. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    13. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    15. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    16. Apip Amrullah & Obie Farobie & Asep Bayu & Novi Syaftika & Edy Hartulistiyoso & Navid R. Moheimani & Surachai Karnjanakom & Yukihiko Matsumura, 2022. "Slow Pyrolysis of Ulva lactuca (Chlorophyta) for Sustainable Production of Bio-Oil and Biochar," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    17. Perez, Caroline L. & Pereira, Laís P.R. da C. & Milessi, Thais S. & Sandri, Juliana P. & Demeke, Mekonnen & Foulquié-Moreno, Maria R. & Thevelein, Johan M. & Zangirolami, Teresa C., 2022. "Towards a practical industrial 2G ethanol production process based on immobilized recombinant S. cerevisiae: Medium and strain selection for robust integrated fixed-bed reactor operation," Renewable Energy, Elsevier, vol. 185(C), pages 363-375.
    18. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    19. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    20. Shashi Kumar & Apurv Yadav, 2018. "Comparative experimental investigation of preheated thumba oil for its performance testing on a CI engine," Energy & Environment, , vol. 29(4), pages 533-542, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:124:y:2018:i:c:p:3-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.