IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v122y2018icp55-64.html
   My bibliography  Save this article

Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends

Author

Listed:
  • Xie, Candie
  • Liu, Jingyong
  • Xie, Wuming
  • Kuo, Jiahong
  • Lu, Xingwen
  • Zhang, Xiaochun
  • He, Yao
  • Sun, Jian
  • Chang, Kenlin
  • Xie, Wenhao
  • Liu, Chao
  • Sun, Shuiyu
  • Buyukada, Musa
  • Evrendilek, Fatih

Abstract

Thermal decomposition behaviors of textile dyeing sludge (TDS), pomelo peel (PP), and their blends (TP) were detected using TG-FTIR. The blend ratios of TDS to PP ranged from 10 to 40 wt% and were subjected to heat above room temperature up to 1000 °C under four heating rates. Our results pointed to four stages for TDS combustion and three stages for PP combustion. The interactions between TDS and PP exerted inhibitive effects during the co-combustion process. Releases of CO2 and light organics occurred less with a TP ratio of 70%–30% (TP73) than with the individual fuels. Apparent activation energy (Ea) was obtained using Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. The FWO-based Ea estimates were in the range of 59.7–122.2 kJ·mol−1 for TDS, 84.4–243.5 kJ·mol−1 for PP, and 94.3–142.1 kJ·mol−1 for TP73.

Suggested Citation

  • Xie, Candie & Liu, Jingyong & Xie, Wuming & Kuo, Jiahong & Lu, Xingwen & Zhang, Xiaochun & He, Yao & Sun, Jian & Chang, Kenlin & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fa, 2018. "Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends," Renewable Energy, Elsevier, vol. 122(C), pages 55-64.
  • Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:55-64
    DOI: 10.1016/j.renene.2018.01.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry," Applied Energy, Elsevier, vol. 114(C), pages 227-237.
    2. Aime Hilaire Tchapda & Sarma V. Pisupati, 2014. "A Review of Thermal Co-Conversion of Coal and Biomass/Waste," Energies, MDPI, vol. 7(3), pages 1-51, February.
    3. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    4. Yurdakul, Sema, 2016. "Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry," Renewable Energy, Elsevier, vol. 89(C), pages 215-223.
    5. Avelar, Nayara Vilela & Rezende, Ana Augusta Passos & Carneiro, Angélica de Cássia Oliveira & Silva, Cláudio Mudadu, 2016. "Evaluation of briquettes made from textile industry solid waste," Renewable Energy, Elsevier, vol. 91(C), pages 417-424.
    6. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
    7. Junga, Robert & Knauer, Waldemar & Niemiec, Patrycja & Tańczuk, Mariusz, 2017. "Experimental tests of co-combustion of laying hens manure with coal by using thermogravimetric analysis," Renewable Energy, Elsevier, vol. 111(C), pages 245-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chengxin & Bi, Haobo & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong, 2020. "Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 1048-1066.
    2. Chen, Zhiyun & Chen, Huashan & Wu, Xieyuan & Zhang, Junhui & Evrendilek, Deniz Eren & Liu, Jingyong & Liang, Guanjie & Li, Weixin, 2021. "Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics," Renewable Energy, Elsevier, vol. 164(C), pages 1408-1423.
    3. Zhuang, Xiuzheng & Song, Yanpei & Zhan, Hao & Yin, Xiuli & Wu, Chuangzhi, 2019. "Synergistic effects on the co-combustion of medicinal biowastes with coals of different ranks," Renewable Energy, Elsevier, vol. 140(C), pages 380-389.
    4. Huang, Hongyi & Liu, Jingyong & Liu, Hui & Evrendilek, Fatih & Zhang, Gang & He, Yao, 2022. "Turning the co-combustion synergy of textile dyeing sludge and waste biochar into emission-to-bottom slag pollution controls toward a circular economy," Renewable Energy, Elsevier, vol. 194(C), pages 760-777.
    5. Cao, Yuhao & Liu, Yanxing & Li, Zhengyuan & Zong, Peiying & Hou, Jiachen & Zhang, Qiyan & Gou, Xiang, 2022. "Synergistic effect, kinetics, and pollutant emission characteristics of co-combustion of polymer-containing oily sludge and cornstalk using TGA and fixed-bed reactor," Renewable Energy, Elsevier, vol. 185(C), pages 748-758.
    6. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    2. Barbanera, M. & Cotana, F. & Di Matteo, U., 2018. "Co-combustion performance and kinetic study of solid digestate with gasification biochar," Renewable Energy, Elsevier, vol. 121(C), pages 597-605.
    3. Oladejo, Jumoke & Adegbite, Stephen & Gao, Xiang & Liu, Hao & Wu, Tao, 2018. "Catalytic and non-catalytic synergistic effects and their individual contributions to improved combustion performance of coal/biomass blends," Applied Energy, Elsevier, vol. 211(C), pages 334-345.
    4. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    5. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    6. Junga, Robert & Pospolita, Janusz & Niemiec, Patrycja, 2020. "Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation," Renewable Energy, Elsevier, vol. 147(P1), pages 1239-1250.
    7. Hyukjin Oh & Kalyan Annamalai & Paul G. Goughner & Ben Thien & John M. Sweeten, 2021. "Reburning of Animal Waste Based Biomass with Coal for NO x Reduction, Part I: Feedlot Biomass (FB) and Coal:FB Blends," Energies, MDPI, vol. 14(23), pages 1-26, December.
    8. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    9. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    10. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    11. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    12. Liu, Chenglin & Zhao, Lei & Zhu, Shun & Shen, Yuefeng & Yu, Jianhua & Yang, Qingchun, 2023. "Advanced exergy analysis and optimization of a coal to ethylene glycol (CtEG) process," Energy, Elsevier, vol. 282(C).
    13. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    14. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    15. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.
    16. Li, Jiawei & Fan, Subo & Zhang, Xuyang & Chen, Zhichao & Qiao, Yanyu & Yuan, Zhenhua & Zeng, Lingyan & Li, Zhengqi, 2022. "Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash," Energy, Elsevier, vol. 251(C).
    17. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    18. Söyler, Nejmi & Goldfarb, Jillian L. & Ceylan, Selim & Saçan, Melek Türker, 2017. "Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae," Energy, Elsevier, vol. 120(C), pages 907-914.
    19. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    20. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:122:y:2018:i:c:p:55-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.