Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.01.064
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Toscano, G. & Duca, D. & Amato, A. & Pizzi, A., 2014. "Emission from realistic utilization of wood pellet stove," Energy, Elsevier, vol. 68(C), pages 644-650.
- Röder, Mirjam & Stolz, Nico & Thornley, Patricia, 2017. "Sweet energy – Bioenergy integration pathways for sugarcane residues. A case study of Nkomazi, District of Mpumalanga, South Africa," Renewable Energy, Elsevier, vol. 113(C), pages 1302-1310.
- Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
- Boukis, Ioannis & Vassilakos, Nikos & Karellas, Sotirios & Kakaras, Emmanuel, 2009. "Techno-economic analysis of the energy exploitation of biomass residues in Heraklion Prefecture--Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 362-377, February.
- Fernández-Puratich, Harald & Hernández, Diógenes & Tenreiro, Claudio, 2015. "Analysis of energetic performance of vine biomass residues as an alternative fuel for Chilean wine industry," Renewable Energy, Elsevier, vol. 83(C), pages 1260-1267.
- Toscano, G. & Duca, D. & Foppa Pedretti, E. & Pizzi, A. & Rossini, G. & Mengarelli, C. & Mancini, M., 2016. "Investigation of woodchip quality: Relationship between the most important chemical and physical parameters," Energy, Elsevier, vol. 106(C), pages 38-44.
- Venturini, Elisa & Vassura, Ivano & Zanetti, Cristian & Pizzi, Andrea & Toscano, Giuseppe & Passarini, Fabrizio, 2015. "Evaluation of non-steady state condition contribution to the total emissions of residential wood pellet stove," Energy, Elsevier, vol. 88(C), pages 650-657.
- Manzone, Marco & Paravidino, Elisa & Bonifacino, Gabriella & Balsari, Paolo, 2016. "Biomass availability and quality produced by vineyard management during a period of 15 years," Renewable Energy, Elsevier, vol. 99(C), pages 465-471.
- Barbanera, M. & Lascaro, E. & Stanzione, V. & Esposito, A. & Altieri, R. & Bufacchi, M., 2016. "Characterization of pellets from mixing olive pomace and olive tree pruning," Renewable Energy, Elsevier, vol. 88(C), pages 185-191.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Davide Pivetta & Sergio Rech & Andrea Lazzaretto, 2020. "Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar," Energies, MDPI, vol. 13(23), pages 1-33, November.
- Alessio Ilari & Ester Foppa Pedretti & Carmine De Francesco & Daniele Duca, 2021. "Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability," Resources, MDPI, vol. 10(12), pages 1-12, December.
- Giuseppe Toscano & Carmine De Francesco & Thomas Gasperini & Sara Fabrizi & Daniele Duca & Alessio Ilari, 2023. "Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels," Resources, MDPI, vol. 12(6), pages 1-22, May.
- Gianfranco Pergher & Rino Gubiani & Matia Mainardis, 2019. "Field Testing of a Biomass-Fueled Flamer for In-Row Weed Control in the Vineyard," Agriculture, MDPI, vol. 9(10), pages 1-11, September.
- Sayfullo Akhmedov & Tatiana Ivanova & Surayyo Abdulloeva & Alexandru Muntean & Vladimír Krepl, 2019. "Contribution to the Energy Situation in Tajikistan by Using Residual Apricot Branches after Pruning as an Alternative Fuel," Energies, MDPI, vol. 12(16), pages 1-11, August.
- Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Carvalho, R. & Tarelho, L.A.C. & Paniagua, S. & Nunes, T. & Otero, M. & Calvo, L.F. & Alves, C., 2019. "Emissions from residential pellet combustion of an invasive acacia species," Renewable Energy, Elsevier, vol. 140(C), pages 319-329.
- Alessio Ilari & Giuseppe Toscano & Ester Foppa Pedretti & Sara Fabrizi & Daniele Duca, 2020. "Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues," Resources, MDPI, vol. 9(8), pages 1-14, August.
- Grzegorz Zając & Jacek Gładysz & Joanna Szyszlak-Bargłowicz, 2025. "Effect of Changes in Mains Voltage on the Operation of the Low-Power Pellet Boiler," Energies, MDPI, vol. 18(3), pages 1-17, January.
- Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kshirsagar, Milind P. & Kalamkar, Vilas R., 2016. "User-centric approach for the design and sizing of natural convection biomass cookstoves for lower emissions," Energy, Elsevier, vol. 115(P1), pages 1202-1215.
- Luigi F. Polonini & Domenico Petrocelli & Simone P. Parmigiani & Adriano M. Lezzi, 2019. "Influence on CO and PM Emissions of an Innovative Burner Pot for Pellet Stoves: An Experimental Study," Energies, MDPI, vol. 12(4), pages 1-13, February.
- Wöhler, Marius & Jaeger, Dirk & Reichert, Gabriel & Schmidl, Christoph & Pelz, Stefan K., 2017. "Influence of pellet length on performance of pellet room heaters under real life operation conditions," Renewable Energy, Elsevier, vol. 105(C), pages 66-75.
- Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
- Sayfullo Akhmedov & Tatiana Ivanova & Surayyo Abdulloeva & Alexandru Muntean & Vladimír Krepl, 2019. "Contribution to the Energy Situation in Tajikistan by Using Residual Apricot Branches after Pruning as an Alternative Fuel," Energies, MDPI, vol. 12(16), pages 1-11, August.
- Alessandro Casasso & Pietro Capodaglio & Fulvio Simonetto & Rajandrea Sethi, 2019. "Environmental and Economic Benefits from the Phase-out of Residential Oil Heating: A Study from the Aosta Valley Region (Italy)," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
- Gianluigi De Gennaro & Paolo Rosario Dambruoso & Alessia Di Gilio & Valerio Di Palma & Annalisa Marzocca & Maria Tutino, 2015. "Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System," IJERPH, MDPI, vol. 13(1), pages 1-9, December.
- Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
- Lampropoulos, Athanasios & Varvoutis, Georgios & Athanasiou, Costas & Marnellos, George E., 2025. "Assessing the electricity potential from agricultural residues in Western Macedonia, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
- Grigoroudis, Evangelos & Petridis, Konstantinos & Arabatzis, Garyfallos, 2014. "RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks," Renewable Energy, Elsevier, vol. 71(C), pages 113-122.
- Tiago Florindo & Ana I. Ferraz & Ana C. Rodrigues & Leonel J. R. Nunes, 2022. "Residual Biomass Recovery in the Wine Sector: Creation of Value Chains for Vine Pruning," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
- Baruah, Debendra Chandra & Enweremadu, Christopher Chintua, 2019. "Prospects of decentralized renewable energy to improve energy access: A resource-inventory-based analysis of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 328-341.
- Giuseppe Toscano & Carmine De Francesco & Thomas Gasperini & Sara Fabrizi & Daniele Duca & Alessio Ilari, 2023. "Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels," Resources, MDPI, vol. 12(6), pages 1-22, May.
- Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
- Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).
- Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "An estimation of the energy potential of agro-industrial residues in Spain," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 972-984.
- Keller, Victor & Lyseng, Benjamin & English, Jeffrey & Niet, Taco & Palmer-Wilson, Kevin & Moazzen, Iman & Robertson, Bryson & Wild, Peter & Rowe, Andrew, 2018. "Coal-to-biomass retrofit in Alberta –value of forest residue bioenergy in the electricity system," Renewable Energy, Elsevier, vol. 125(C), pages 373-383.
- Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
- Davide Pivetta & Sergio Rech & Andrea Lazzaretto, 2020. "Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar," Energies, MDPI, vol. 13(23), pages 1-33, November.
- Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:121:y:2018:i:c:p:513-520. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v121y2018icp513-520.html