IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v120y2018icp151-162.html
   My bibliography  Save this article

Site selection for offshore wind farms in the southwest coast of South Korea

Author

Listed:
  • Kim, Choong-Ki
  • Jang, Seonju
  • Kim, Tae Yun

Abstract

This study is to provide guidance for selecting sites suitable for offshore wind farm developments with lower social, economic, and environmental impacts in the South Korea southwest coastal area with its complicated shoreline configuration, large ecologically important tidal flats, and various marine-based human activities. To analyze the economic feasibility of offshore wind farms, harvestable energy was calculated using an InVEST (Integrated Valuation of Environmental Services and Tradeoffs) model that has been used widely for marine ecosystem service analysis. Capital costs for grid connection and electricity transmission, operation and maintenance costs, and other costs were integrated together to calculate a net present value (NPV) of a 60-MW offshore wind farm assuming a lifetime of 20 years of operation. It is important to note that NPVs of offshore wind farms are affected significantly by the proximity to the closest inland substations, showing the importance of grid connection. Criteria that may cause social and environmental conflicts were grouped into three categories: nature conservation and landscape protection, marine-based human activities, and marine environment and marine ecosystem. Available datasets for each category were compiled and incorporated into GIS-based maps. Many social and environmental criteria overlapped spatially, and areas influenced by one or more criteria were designated as areas of potential conflicts. Economic analysis results and potential social and environmental conflicts were considered together to select areas that could produce wind energy more efficiently with minimum social and environmental conflicts. Economic, social, and environmental assessment strategies and procedures provided in this study can be used as an effective decision-making support tool to find sites for offshore wind farm development and various other offshore developments as well.

Suggested Citation

  • Kim, Choong-Ki & Jang, Seonju & Kim, Tae Yun, 2018. "Site selection for offshore wind farms in the southwest coast of South Korea," Renewable Energy, Elsevier, vol. 120(C), pages 151-162.
  • Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:151-162
    DOI: 10.1016/j.renene.2017.12.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katie K. Arkema & Greg Guannel & Gregory Verutes & Spencer A. Wood & Anne Guerry & Mary Ruckelshaus & Peter Kareiva & Martin Lacayo & Jessica M. Silver, 2013. "Coastal habitats shield people and property from sea-level rise and storms," Nature Climate Change, Nature, vol. 3(10), pages 913-918, October.
    2. Cradden, L. & Kalogeri, C. & Barrios, I. Martinez & Galanis, G. & Ingram, D. & Kallos, G., 2016. "Multi-criteria site selection for offshore renewable energy platforms," Renewable Energy, Elsevier, vol. 87(P1), pages 791-806.
    3. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    4. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    5. Colmenar-Santos, Antonio & Perera-Perez, Javier & Borge-Diez, David & dePalacio-Rodríguez, Carlos, 2016. "Offshore wind energy: A review of the current status, challenges and future development in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 1-18.
    6. Kucukali, Serhat & Dinçkal, Çiğdem, 2014. "Wind energy resource assessment of Izmit in the West Black Sea Coastal Region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 790-795.
    7. Kim, Taeyun & Park, Jeong-Il & Maeng, Junho, 2016. "Offshore wind farm site selection study around Jeju Island, South Korea," Renewable Energy, Elsevier, vol. 94(C), pages 619-628.
    8. van Haaren, Rob & Fthenakis, Vasilis, 2011. "GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3332-3340, September.
    9. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    10. Fang, Hsin-Fa, 2014. "Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago," Renewable Energy, Elsevier, vol. 67(C), pages 237-241.
    11. Cavazzi, S. & Dutton, A.G., 2016. "An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK's offshore wind energy potential," Renewable Energy, Elsevier, vol. 87(P1), pages 212-228.
    12. Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
    13. Huang, Qunwu & Shi, Yeqiang & Wang, Yiping & Lu, Linping & Cui, Yong, 2015. "Multi-turbine wind-solar hybrid system," Renewable Energy, Elsevier, vol. 76(C), pages 401-407.
    14. Kim, Ji-Young & Oh, Ki-Yong & Kang, Keum-Seok & Lee, Jun-Shin, 2013. "Site selection of offshore wind farms around the Korean Peninsula through economic evaluation," Renewable Energy, Elsevier, vol. 54(C), pages 189-195.
    15. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    16. Ruckelshaus, Mary & McKenzie, Emily & Tallis, Heather & Guerry, Anne & Daily, Gretchen & Kareiva, Peter & Polasky, Stephen & Ricketts, Taylor & Bhagabati, Nirmal & Wood, Spencer A. & Bernhardt, Joanna, 2015. "Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions," Ecological Economics, Elsevier, vol. 115(C), pages 11-21.
    17. Yamaguchi, Atsushi & Ishihara, Takeshi, 2014. "Assessment of offshore wind energy potential using mesoscale model and geographic information system," Renewable Energy, Elsevier, vol. 69(C), pages 506-515.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Gazos & Dimitra G. Vagiona, 2024. "Marine Suitability Assessment for Offshore Wind Farms’ Deployment in Thrace, Greece," Sustainability, MDPI, vol. 16(10), pages 1-30, May.
    2. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    3. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    4. Dimitris Ioannidis & Dimitra G. Vagiona, 2024. "Optimal Wind Farm Siting Using a Fuzzy Analytic Hierarchy Process: Evaluating the Island of Andros, Greece," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    5. Pandora Gkeka-Serpetsidaki & Georgia Skiniti & Stavroula Tournaki & Theocharis Tsoutsos, 2024. "A Review of the Sustainable Siting of Offshore Wind Farms," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    6. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Wu, Yunna & Liao, Mingjuan & Hu, Mengyao & Lin, Jiawei & Zhou, Jianli & Zhang, Buyuan & Xu, Chuanbo, 2020. "A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective: A case in China," Energy, Elsevier, vol. 213(C).
    8. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Pojadas, Dave J. & Abundo, Michael Lochinvar S., 2022. "A spatial cost-benefit-externality modelling framework for siting of variable renewable energy farms: A case in Bohol, Philippines," Renewable Energy, Elsevier, vol. 181(C), pages 1177-1187.
    10. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    11. Alves, Cláudio Jorge Pinto & Silva, Evandro José da & Müller, Carlos & Borille, Giovanna Miceli Ronzani & Guterres, Marcelo Xavier & Arraut, Eduardo Moraes & Peres, Marcelo Saraiva & Santos, Reinal, 2020. "Towards an objective decision-making framework for regional airport site selection," Journal of Air Transport Management, Elsevier, vol. 89(C).
    12. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Xin Nie & Hubin Ma & Sihan Chen & Kailu Li & Zhenhan Yu & Han Wang & Zhuxia Wei, 2024. "Offshore Wind Farms and Tourism Development Relationship to Energy Distribution Justice for the Beibu Gulf, China," Land, MDPI, vol. 13(5), pages 1-23, May.
    15. Hasan Eroğlu, 2021. "Multi-criteria decision analysis for wind power plant location selection based on fuzzy AHP and geographic information systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18278-18310, December.
    16. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    17. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    18. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    19. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    20. Sofia Spyridonidou & Dimitra G. Vagiona & Eva Loukogeorgaki, 2020. "Strategic Planning of Offshore Wind Farms in Greece," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    21. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    4. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    5. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    6. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    7. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Gigović, Ljubomir & Pamučar, Dragan & Božanić, Darko & Ljubojević, Srđan, 2017. "Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia," Renewable Energy, Elsevier, vol. 103(C), pages 501-521.
    9. Gao, Jianwei & Guo, Fengjia & Ma, Zeyang & Huang, Xin & Li, Xiangzhen, 2020. "Multi-criteria group decision-making framework for offshore wind farm site selection based on the intuitionistic linguistic aggregation operators," Energy, Elsevier, vol. 204(C).
    10. Chaouachi, Aymen & Covrig, Catalin Felix & Ardelean, Mircea, 2017. "Multi-criteria selection of offshore wind farms: Case study for the Baltic States," Energy Policy, Elsevier, vol. 103(C), pages 179-192.
    11. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Dinçer, A.Ersin & Demir, A. & Yılmaz, K., 2023. "Enhancing wind turbine site selection through a novel wake penalty criterion," Energy, Elsevier, vol. 283(C).
    14. Dragan Pamučar & Ljubomir Gigović & Zoran Bajić & Miljojko Janošević, 2017. "Location Selection for Wind Farms Using GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers," Sustainability, MDPI, vol. 9(8), pages 1-23, July.
    15. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    16. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    17. Shafiullah, Md & Rahman, Syed Masiur & Mortoja, Md. Golam & Al-Ramadan, Baqer, 2016. "Role of spatial analysis technology in power system industry: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 584-595.
    18. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    19. Bahaj, AbuBakr S. & Mahdy, Mostafa & Alghamdi, Abdulsalam S. & Richards, David J., 2020. "New approach to determine the Importance Index for developing offshore wind energy potential sites: Supported by UK and Arabian Peninsula case studies," Renewable Energy, Elsevier, vol. 152(C), pages 441-457.
    20. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:120:y:2018:i:c:p:151-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.