IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4204-d1396240.html
   My bibliography  Save this article

Marine Suitability Assessment for Offshore Wind Farms’ Deployment in Thrace, Greece

Author

Listed:
  • Konstantinos Gazos

    (Department of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Dimitra G. Vagiona

    (Department of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

The exploitation of renewable energy resources is an effective option to respond to climate change challenges. Wind energy can be exploited more efficiently and effectively than any other renewable energy source. By switching from onshore wind energy projects to offshore, the positive aspects of onshore wind energy remain and, at the same time, no valuable onshore area is occupied, while their efficiency (e.g., capacity factor) is increased. Greece has a rich wind potential and the maritime region of Thrace is one of Greece’s maritime regions with the greatest potential for the development of offshore wind energy. The aim of the present paper is to identify the most appropriate sites for the deployment of offshore wind farms in the region of Thrace. The methodology includes (i) the delineation of the study area and the definition of the support structure of the wind turbine, (ii) the identification of seven (7) exclusion and fifteen (15) assessment criteria, (iii) the suitability analysis under five different zoning scenarios (equal weight, environmental, social, techno-economic, and researchers’ subjective), and (iv) the micro siting and qualitative assessment of the most suitable sites based on energy, environmental, social, and economic criteria. The methodology is based on the combined use of Geographical Information Systems (GISs), specifically ArcGIS Desktop version 10.8.1, wind assessment software tools (WaSPs), specifically WaSP version 12.8, and multi-criteria decision-making methods. The results of the paper illustrate that the optimal suitability area that is proposed for offshore wind farm deployment is located at the easternmost end of the Greek part of the Thracian Sea. The planning and the deployment of offshore wind farm projects should follow a holistic and environmentally driven approach to ensure the integrity of all habitats and species affected.

Suggested Citation

  • Konstantinos Gazos & Dimitra G. Vagiona, 2024. "Marine Suitability Assessment for Offshore Wind Farms’ Deployment in Thrace, Greece," Sustainability, MDPI, vol. 16(10), pages 1-30, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4204-:d:1396240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Choong-Ki & Jang, Seonju & Kim, Tae Yun, 2018. "Site selection for offshore wind farms in the southwest coast of South Korea," Renewable Energy, Elsevier, vol. 120(C), pages 151-162.
    2. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    3. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    4. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    5. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    6. Irene van Kamp & Frits van den Berg, 2021. "Health Effects Related to Wind Turbine Sound: An Update," IJERPH, MDPI, vol. 18(17), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    2. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Sofia Spyridonidou & Dimitra G. Vagiona & Eva Loukogeorgaki, 2020. "Strategic Planning of Offshore Wind Farms in Greece," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    6. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    7. Pandora Gkeka-Serpetsidaki & Georgia Skiniti & Stavroula Tournaki & Theocharis Tsoutsos, 2024. "A Review of the Sustainable Siting of Offshore Wind Farms," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    8. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
    9. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    10. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    11. Hugo Díaz & Carlos Guedes Soares, 2021. "A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain)," Energies, MDPI, vol. 14(4), pages 1-18, February.
    12. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    13. Ashraf Abdelkarim & Mohamed Hssan Hassan Abdelhafez & Khaled Elkhayat & Mohammad Alshenaifi & Sultan Alfraidi & Ali Aldersoni & Ghazy Albaqawy & Amer Aldamaty & Ayman Ragab, 2024. "Spatial Suitability Index for Sustainable Urban Development in Desert Hinterland Using a Geographical-Information-System-Based Multicriteria Decision-Making Approach," Land, MDPI, vol. 13(7), pages 1-37, July.
    14. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    15. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Ivana Racetin & Nives Ostojić Škomrlj & Marina Peko & Mladen Zrinjski, 2023. "Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia," Energies, MDPI, vol. 16(13), pages 1-18, June.
    17. Sergi Vilajuana Llorente & José Ignacio Rapha & José Luis Domínguez-García, 2024. "Development and Analysis of a Global Floating Wind Levelised Cost of Energy Map," Clean Technol., MDPI, vol. 6(3), pages 1-27, September.
    18. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    19. Chaouachi, Aymen & Covrig, Catalin Felix & Ardelean, Mircea, 2017. "Multi-criteria selection of offshore wind farms: Case study for the Baltic States," Energy Policy, Elsevier, vol. 103(C), pages 179-192.
    20. Sylvester Stallone Pereira de Azevedo & Amaro Olimpio Pereira Junior & Neilton Fidelis da Silva & Renato Samuel Barbosa de Araújo & Antonio Aldísio Carlos Júnior, 2020. "Assessment of Offshore Wind Power Potential along the Brazilian Coast," Energies, MDPI, vol. 13(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4204-:d:1396240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.