IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp324-333.html
   My bibliography  Save this article

Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach

Author

Listed:
  • Boukelia, T.E.
  • Arslan, O.
  • Mecibah, M.S.

Abstract

One of the major challenges of developing and growing of parabolic trough solar thermal power plants (PTSTPPs) is enhancing the techno-economic performance. The goal of this study is to develop a unique artificial neural network (ANN) model that gives the best approach to predict the levelized cost of electricity (LCOE) of two different PTSTPPs integrated with thermal energy storage and fuel backup system; the first one is using thermic oil as primary heat transfer fluid in the solar field, while the other one is based on molten salt. By this way, the optimum designs of the two plants were determined in the LCOE analysis by using the obtained weights and biases of the best ANN topology. The techno-economic potentials of using molten salt in comparison to thermic oil of the two optimized plants were investigated considering both hourly and annual performances.

Suggested Citation

  • Boukelia, T.E. & Arslan, O. & Mecibah, M.S., 2017. "Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach," Renewable Energy, Elsevier, vol. 105(C), pages 324-333.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:324-333
    DOI: 10.1016/j.renene.2016.12.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116311405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2004. "Optimization of solar systems using artificial neural-networks and genetic algorithms," Applied Energy, Elsevier, vol. 77(4), pages 383-405, April.
    2. Spelling, James & Favrat, Daniel & Martin, Andrew & Augsburger, Germain, 2012. "Thermoeconomic optimization of a combined-cycle solar tower power plant," Energy, Elsevier, vol. 41(1), pages 113-120.
    3. Boukelia, T.E. & Mecibah, M.S. & Kumar, B.N. & Reddy, K.S., 2015. "Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt," Energy, Elsevier, vol. 88(C), pages 292-303.
    4. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
    5. Poghosyan, V. & Hassan, Mohamed I., 2015. "Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant," Renewable Energy, Elsevier, vol. 75(C), pages 152-164.
    6. Cabello, J.M. & Cejudo, J.M. & Luque, M. & Ruiz, F. & Deb, K. & Tewari, R., 2011. "Optimization of the size of a solar thermal electricity plant by means of genetic algorithms," Renewable Energy, Elsevier, vol. 36(11), pages 3146-3153.
    7. De Luca, Fabrizio & Ferraro, Vittorio & Marinelli, Valerio, 2015. "On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salts," Energy, Elsevier, vol. 83(C), pages 230-239.
    8. Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
    9. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Tellez, Felix M., 2013. "Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends," Applied Energy, Elsevier, vol. 112(C), pages 274-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enkhbayar Shagdar & Bachirou Guene Lougou & Batmunkh Sereeter & Yong Shuai & Azeem Mustafa & Enkhjin Ganbold & Dongmei Han, 2022. "Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions," Energies, MDPI, vol. 15(4), pages 1-24, February.
    2. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    3. Qi, Chu & Zeng, Xianglong & Wang, Yongjian & Li, Hongguang, 2022. "Adaptive time window convolutional neural networks concerning multiple operation modes with applications in energy efficiency predictions," Energy, Elsevier, vol. 240(C).
    4. Lopes, Telma & Fasquelle, Thomas & Silva, Hugo G., 2021. "Pressure drops, heat transfer coefficient, costs and power block design for direct storage parabolic trough power plants running molten salts," Renewable Energy, Elsevier, vol. 163(C), pages 530-543.
    5. Huang, Chang & Hou, Hongjuan & Hu, Eric & Liang, Mingyu & Yang, Yongping, 2017. "Impact of power station capacities and sizes of solar field on the performance of solar aided power generation," Energy, Elsevier, vol. 139(C), pages 667-679.
    6. Yue Liu & Lixin Tian & Zhuyun Xie & Zaili Zhen & Huaping Sun, 2021. "Option to survive or surrender: carbon asset management and optimization in thermal power enterprises from China," Papers 2104.04729, arXiv.org.
    7. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    8. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    9. Bouziane, Hamza & Benhamou, Brahim, 2023. "Assessment of the impact of thermal energy storage operation strategy on parabolic trough solar power plant performance," Renewable Energy, Elsevier, vol. 202(C), pages 713-720.
    10. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    11. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    12. Boukelia, T.E. & Arslan, O. & Bouraoui, A., 2021. "Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant," Energy, Elsevier, vol. 232(C).
    13. Sunil, P.U. & Barve, Jayesh & Nataraj, P.S.V., 2018. "A robust heat recovery steam generator drum level control for wide range operation flexibility considering renewable energy integration," Energy, Elsevier, vol. 163(C), pages 873-893.
    14. Tian, Zhiyong & Perers, Bengt & Furbo, Simon & Fan, Jianhua, 2017. "Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series," Applied Energy, Elsevier, vol. 205(C), pages 417-427.
    15. Salazar, Germán A. & Fraidenraich, Naum & de Oliveira, Carlos Antonio Alves & de Castro Vilela, Olga & Hongn, Marcos & Gordon, Jeffrey M., 2017. "Analytic modeling of parabolic trough solar thermal power plants," Energy, Elsevier, vol. 138(C), pages 1148-1156.
    16. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Investigation of a solar-biomass gasification system with the production of methanol and electricity: Thermodynamic, economic and off-design operation," Applied Energy, Elsevier, vol. 243(C), pages 91-101.
    17. Boukelia, T.E. & Ghellab, A. & Laouafi, A. & Bouraoui, A. & Kabar, Y., 2020. "Cooling performances time series of CSP plants: Calculation and analysis using regression and ANN models," Renewable Energy, Elsevier, vol. 157(C), pages 809-827.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    2. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    3. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    4. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    5. Ponce, Carolina V. & Sáez, Doris & Bordons, Carlos & Núñez, Alfredo, 2016. "Dynamic simulator and model predictive control of an integrated solar combined cycle plant," Energy, Elsevier, vol. 109(C), pages 974-986.
    6. Manente, Giovanni & Rech, Sergio & Lazzaretto, Andrea, 2016. "Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems," Renewable Energy, Elsevier, vol. 96(PA), pages 172-189.
    7. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    8. Boukelia, T.E. & Ghellab, A. & Laouafi, A. & Bouraoui, A. & Kabar, Y., 2020. "Cooling performances time series of CSP plants: Calculation and analysis using regression and ANN models," Renewable Energy, Elsevier, vol. 157(C), pages 809-827.
    9. Mihoub, Sofiane & Chermiti, Ali & Beltagy, Hani, 2017. "Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria," Energy, Elsevier, vol. 122(C), pages 801-810.
    10. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    11. Valencia-Ortega, G. & Levario-Medina, S. & Angulo-Brown, F. & Barranco-Jiménez, M.A., 2023. "Energetic optimization and local stability of heliothermal plant models under three thermo-economic performance regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    12. Li, Yuanyuan & Yang, Yongping, 2014. "Thermodynamic analysis of a novel integrated solar combined cycle," Applied Energy, Elsevier, vol. 122(C), pages 133-142.
    13. Arnaoutakis, Georgios E. & Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2022. "Dynamic modeling of combined concentrating solar tower and parabolic trough for increased day-to-day performance," Applied Energy, Elsevier, vol. 323(C).
    14. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    15. Xiaolei Li & Zhifeng Wang & Ershu Xu & Linrui Ma & Li Xu & Dongming Zhao, 2019. "Dynamically Coupled Operation of Two-Tank Indirect TES and Steam Generation System," Energies, MDPI, vol. 12(9), pages 1-42, May.
    16. Babaelahi, Mojtaba & Mofidipour, Ehsan & Rafat, Ehsan, 2020. "Combined Energy-Exergy-Control (CEEC) analysis and multi-objective optimization of parabolic trough solar collector powered steam power plant," Energy, Elsevier, vol. 201(C).
    17. Zhang, Nan & Yu, Gang & Huang, Chang & Duan, Liqiang & Hou, Hongjuan & Hu, Eric & Ding, Zeyu & Wang, Jianhua, 2020. "Full-day dynamic characteristics analysis of a solar aided coal-fired power plant in fuel saving mode," Energy, Elsevier, vol. 208(C).
    18. Dowling, Alexander W. & Zheng, Tian & Zavala, Victor M., 2017. "Economic assessment of concentrated solar power technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1019-1032.
    19. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    20. Bo Yang & Mohammad Mohsen Sarafraz & Maziar Arjomandi, 2021. "Thermal Performance Characteristics of a Microchannel Gas Heater for Solar Heating Applications," Energies, MDPI, vol. 14(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:324-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.