IDEAS home Printed from
   My bibliography  Save this article

Dynamic simulator and model predictive control of an integrated solar combined cycle plant


  • Ponce, Carolina V.
  • Sáez, Doris
  • Bordons, Carlos
  • Núñez, Alfredo


This paper presents the design and evaluation of a dynamic simulator for an ISCC (integrated solar combined cycle) plant. The design of the simulator is based on the phenomenological equations for both a combined cycle plant and a solar plant. The simulator incorporates a regulatory control strategy based on PI (proportional-integral) controllers and was developed in the MATLAB/Simulink® environment. A MPC (model predictive control) strategy established at a supervisory level is presented. The intent of the strategy is to regulate the steam pressure of the superheater of the ISCC plant. The combined use of the simulator and the supervisory control strategy allows for the quantification of the reduction in fuel consumption that can be achieved when integrated solar collectors are used in a combined cycle plant. The ISCC plant simulator is suitable for designing, evaluating and testing control strategies and for planning the integration of solar and combined cycle plants.

Suggested Citation

  • Ponce, Carolina V. & Sáez, Doris & Bordons, Carlos & Núñez, Alfredo, 2016. "Dynamic simulator and model predictive control of an integrated solar combined cycle plant," Energy, Elsevier, vol. 109(C), pages 974-986.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:974-986
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Lambert, Tristan & Hoadley, Andrew & Hooper, Barry, 2014. "Process integration of solar thermal energy with natural gas combined cycle carbon capture," Energy, Elsevier, vol. 74(C), pages 248-253.
    2. Spelling, James & Favrat, Daniel & Martin, Andrew & Augsburger, Germain, 2012. "Thermoeconomic optimization of a combined-cycle solar tower power plant," Energy, Elsevier, vol. 41(1), pages 113-120.
    3. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    4. Baghernejad, A. & Yaghoubi, M., 2010. "Exergy analysis of an integrated solar combined cycle system," Renewable Energy, Elsevier, vol. 35(10), pages 2157-2164.
    5. Hosseini, R. & Soltani, M. & Valizadeh, G., 2005. "Technical and economic assessment of the integrated solar combined cycle power plants in Iran," Renewable Energy, Elsevier, vol. 30(10), pages 1541-1555.
    6. Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
    7. Amelio, Mario & Ferraro, Vittorio & Marinelli, Valerio & Summaria, Antonio, 2014. "An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors," Energy, Elsevier, vol. 69(C), pages 742-748.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tsoutsanis, Elias & Meskin, Nader, 2017. "Derivative-driven window-based regression method for gas turbine performance prognostics," Energy, Elsevier, vol. 128(C), pages 302-311.
    2. Chandrasekharan, Sreepradha & Panda, Rames C. & Swaminathan, Bhuvaneswari Natrajan & Panda, Atanu, 2018. "Operational control of an integrated drum boiler of a coal fired thermal power plant," Energy, Elsevier, vol. 159(C), pages 977-987.
    3. Abedini Najafabadi, Hamed & Ozalp, Nesrin, 2018. "An advanced modeling and experimental study to improve temperature uniformity of a solar receiver," Energy, Elsevier, vol. 165(PB), pages 984-998.
    4. Li, Xiaolei & Xu, Ershu & Ma, Linrui & Song, Shuang & Xu, Li, 2019. "Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant," Renewable Energy, Elsevier, vol. 132(C), pages 998-1017.
    5. Safiyullah, F. & Sulaiman, S.A. & Naz, M.Y. & Jasmani, M.S. & Ghazali, S.M.A., 2018. "Prediction on performance degradation and maintenance of centrifugal gas compressors using genetic programming," Energy, Elsevier, vol. 158(C), pages 485-494.
    6. Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J. & Alves, Marco A.C., 2018. "Application of nonlinear multivariable model predictive control to transient operation of a gas turbine and NOX emissions reduction," Energy, Elsevier, vol. 149(C), pages 341-353.
    7. Oravec, Juraj & Bakošová, Monika & Galčíková, Lenka & Slávik, Michal & Horváthová, Michaela & Mészáros, Alajos, 2019. "Soft-constrained robust model predictive control of a plate heat exchanger: Experimental analysis," Energy, Elsevier, vol. 180(C), pages 303-314.
    8. Oravec, Juraj & Bakošová, Monika & Trafczynski, Marian & Vasičkaninová, Anna & Mészáros, Alajos & Markowski, Mariusz, 2018. "Robust model predictive control and PID control of shell-and-tube heat exchangers," Energy, Elsevier, vol. 159(C), pages 1-10.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:974-986. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.