IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp966-979.html
   My bibliography  Save this article

Performance and emission reduction potential of renewable energy aided coal-fired power generation systems

Author

Listed:
  • Ye, Xuemin
  • Wang, Jia
  • Li, Chunxi

Abstract

A renewable energy aided coal-fired power generation system (REACPGS) is proposed to provide a meaningful and promising way for energy conservation and emission reduction. General matrix models of the heat balance and exergy losses of REACPGS are established, and the thermo-economic performance, energy conservation and emission reduction potentials are investigated. The effects of system capacity, shunt coefficient and the acting position of auxiliary steam-generating system (ASS) on the overall performance are examined. Results show that the increments of thermal performance indicators in a 300 MW system are higher than those in a 600 MW system; it is a preferred choice to upgrade a 300 MW system integrated with ASS. The exergy loss coefficient of No.5 heater is the largest in all heaters, followed by that of No.2 heater; both No.5 and No.2 heaters dominate the critical energy conservation potential. Because the quality of bled steam for No.5 heater is inferior to that for No.2 heater, the benefits as ASS acting on No.2 heater are over than those on No.5 heater. Thermo-economic performance indicators are distinctly improved with increasing shunt coefficient, and reach the maximal values under the case of bled steam totally supplanted by ASS.

Suggested Citation

  • Ye, Xuemin & Wang, Jia & Li, Chunxi, 2016. "Performance and emission reduction potential of renewable energy aided coal-fired power generation systems," Energy, Elsevier, vol. 113(C), pages 966-979.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:966-979
    DOI: 10.1016/j.energy.2016.07.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216310556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
    2. Zhai, Rongrong & Liu, Hongtao & Li, Chao & Zhao, Miaomiao & Yang, Yongping, 2016. "Analysis of a solar-aided coal-fired power generation system based on thermo-economic structural theory," Energy, Elsevier, vol. 102(C), pages 375-387.
    3. Zhai, Rongrong & Zhao, Miaomiao & Tan, Kaiyu & Yang, Yongping, 2015. "Optimizing operation of a solar-aided coal-fired power system based on the solar contribution evaluation method," Applied Energy, Elsevier, vol. 146(C), pages 328-334.
    4. Karamarkovic, Rade & Karamarkovic, Vladan, 2010. "Energy and exergy analysis of biomass gasification at different temperatures," Energy, Elsevier, vol. 35(2), pages 537-549.
    5. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2012. "Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping," Energy Policy, Elsevier, vol. 40(C), pages 204-218.
    6. Pak, Pyong Sik & Suzuki, Yutaka & Kosugi, Takanobu, 1997. "A CO2-capturing hybrid power-generation system with highly efficient use of solar thermal energy," Energy, Elsevier, vol. 22(2), pages 295-299.
    7. Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
    8. Kosugi, Takanobu & Pak, Pyong Sik, 2003. "Economic evaluation of solar thermal hybrid H2O turbine power generation systems," Energy, Elsevier, vol. 28(3), pages 185-198.
    9. Corrado, A. & Fiorini, P. & Sciubba, E., 2006. "Environmental assessment and extended exergy analysis of a “zero CO2 emission”, high-efficiency steam power plant," Energy, Elsevier, vol. 31(15), pages 3186-3198.
    10. Hosseini, R. & Soltani, M. & Valizadeh, G., 2005. "Technical and economic assessment of the integrated solar combined cycle power plants in Iran," Renewable Energy, Elsevier, vol. 30(10), pages 1541-1555.
    11. Montes, M.J. & Rovira, A. & Muñoz, M. & Martínez-Val, J.M., 2011. "Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors," Applied Energy, Elsevier, vol. 88(9), pages 3228-3238.
    12. Hessami, Mir-Akbar & Campbell, Hugh & Sanguinetti, Christopher, 2011. "A feasibility study of hybrid wind power systems for remote communities," Energy Policy, Elsevier, vol. 39(2), pages 877-886, February.
    13. Li, Yuanyuan & Yang, Yongping, 2014. "Thermodynamic analysis of a novel integrated solar combined cycle," Applied Energy, Elsevier, vol. 122(C), pages 133-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    2. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & He, Yu & Lu, Longxi, 2018. "How to promote the development of energy-saving and emission-reduction with changing economic growth rate—A case study of China," Energy, Elsevier, vol. 143(C), pages 732-745.
    3. Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    2. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    3. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    4. Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
    5. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    6. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    7. Zhao, Yawen & Hong, Hui & Jin, Hongguang, 2017. "Optimization of the solar field size for the solar–coal hybrid system," Applied Energy, Elsevier, vol. 185(P2), pages 1162-1172.
    8. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    9. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    10. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    11. Manente, Giovanni & Rech, Sergio & Lazzaretto, Andrea, 2016. "Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems," Renewable Energy, Elsevier, vol. 96(PA), pages 172-189.
    12. Antonio Rovira & Consuelo Sánchez & Manuel Valdés & Ruben Abbas & Rubén Barbero & María José Montes & Marta Muñoz & Javier Muñoz-Antón & Guillermo Ortega & Fernando Varela, 2018. "Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration," Energies, MDPI, vol. 11(5), pages 1-16, April.
    13. Jiang, Jintao & Li, Chunxi & Kong, Mengdi & Ye, Xuemin, 2023. "Insights into 4E evaluation of a novel solar-assisted gas-fired decarburization power generation system with oxygen-enriched combustion," Energy, Elsevier, vol. 278(C).
    14. Amelio, Mario & Ferraro, Vittorio & Marinelli, Valerio & Summaria, Antonio, 2014. "An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors," Energy, Elsevier, vol. 69(C), pages 742-748.
    15. Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.
    16. Li, Yuanyuan & Yang, Yongping, 2015. "Impacts of solar multiples on the performance of integrated solar combined cycle systems with two direct steam generation fields," Applied Energy, Elsevier, vol. 160(C), pages 673-680.
    17. Zhang, Zuxian & Duan, Liqiang & Wang, Zhen & Ren, Yujie, 2022. "General performance evaluation method of integrated solar combined cycle (ISCC) system," Energy, Elsevier, vol. 240(C).
    18. Dabwan, Yousef N. & Pei, Gang, 2020. "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renewable Energy, Elsevier, vol. 152(C), pages 925-941.
    19. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    20. Zhu, Guangdong & Neises, Ty & Turchi, Craig & Bedilion, Robin, 2015. "Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant," Renewable Energy, Elsevier, vol. 74(C), pages 815-824.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:966-979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.