IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922007784.html
   My bibliography  Save this article

Dynamic modeling of combined concentrating solar tower and parabolic trough for increased day-to-day performance

Author

Listed:
  • Arnaoutakis, Georgios E.
  • Katsaprakakis, Dimitris Al.
  • Christakis, Dimitris G.

Abstract

Concentrating solar power is an important technological option to gradually increase the share of energy produced by renewable energy sources. Central power towers and parabolic trough collectors, are currently the most mature technologies globally installed. While the former technology requires less land area to produce the same power output, the latter operates at lower temperatures thereby requiring less demanding materials. In this paper, we investigate by dynamic modeling the potential of both technologies in the same plant configuration. We find more stable day-to-day annual power profile for a configuration of a 29 MWe tower and 25 MWe of north–south oriented parabolic trough collectors compared to single technology plants. This results in a higher maximum capacity factor of 18% at 925 W/m2 direct normal irradiance and discounted payback of 9 years at a cost of electricity of 248 Euro/MWh compared to a standalone plant based on parabolic trough technology. In this way, the advantages of both concentrating technologies can be utilized and aid towards wider utilization of solar energy.

Suggested Citation

  • Arnaoutakis, Georgios E. & Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2022. "Dynamic modeling of combined concentrating solar tower and parabolic trough for increased day-to-day performance," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922007784
    DOI: 10.1016/j.apenergy.2022.119450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922007784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Izquierdo, Salvador & Montañés, Carlos & Dopazo, César & Fueyo, Norberto, 2010. "Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage," Energy Policy, Elsevier, vol. 38(10), pages 6215-6221, October.
    2. Ng, Yi Cheng & Lipiński, Wojciech, 2012. "Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production," Energy, Elsevier, vol. 44(1), pages 720-731.
    3. Hertel, Julian D. & Canals, Vincent & Pujol-Nadal, Ramón, 2020. "On-site optical characterization of large-scale solar collectors through ray-tracing optimization," Applied Energy, Elsevier, vol. 262(C).
    4. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    5. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications," Energy, Elsevier, vol. 114(C), pages 513-525.
    6. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    7. Dimitris Al. Katsaprakakis & Apostolos Michopoulos & Vasiliki Skoulou & Eirini Dakanali & Aggeliki Maragkaki & Stavroula Pappa & Ioannis Antonakakis & Dimitris Christakis & Constantinos Condaxakis, 2022. "A Multidisciplinary Approach for an Effective and Rational Energy Transition in Crete Island, Greece," Energies, MDPI, vol. 15(9), pages 1-49, April.
    8. González-Gómez, P.A. & Gómez-Hernández, J. & Ruiz, C. & Santana, D., 2022. "Can solar tower plants withstand the operational flexibility of combined cycle plants?," Applied Energy, Elsevier, vol. 314(C).
    9. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    10. Keshtkar, Mohammad Mehdi & Talebizadeh, Pouyan, 2017. "Multi-objective optimization of cooling water package based on 3E analysis: A case study," Energy, Elsevier, vol. 134(C), pages 840-849.
    11. De Luca, Fabrizio & Ferraro, Vittorio & Marinelli, Valerio, 2015. "On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salts," Energy, Elsevier, vol. 83(C), pages 230-239.
    12. Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).
    13. Salazar, Germán A. & Fraidenraich, Naum & de Oliveira, Carlos Antonio Alves & de Castro Vilela, Olga & Hongn, Marcos & Gordon, Jeffrey M., 2017. "Analytic modeling of parabolic trough solar thermal power plants," Energy, Elsevier, vol. 138(C), pages 1148-1156.
    14. Flueckiger, Scott M. & Iverson, Brian D. & Garimella, Suresh V. & Pacheco, James E., 2014. "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Elsevier, vol. 113(C), pages 86-96.
    15. Ravelli, S. & Franchini, G. & Perdichizzi, A., 2018. "Comparison of different CSP technologies for combined power and cooling production," Renewable Energy, Elsevier, vol. 121(C), pages 712-721.
    16. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Tellez, Felix M., 2013. "Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends," Applied Energy, Elsevier, vol. 112(C), pages 274-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuela Privitera & Riccardo Caponetto & Fabio Matera & Salvatore Vasta, 2022. "Impact of Geometry on a Thermal-Energy Storage Finned Tube during the Discharging Process," Energies, MDPI, vol. 15(21), pages 1-22, October.
    2. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2024. "Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems," Energies, MDPI, vol. 17(3), pages 1-12, January.
    3. Ramalingam Venkatesaperumal & Kutbudeen Syed Jafar & Perumal Venkatesan Elumalai & Mohamed Abbas & Erdem Cuce & Saboor Shaik & Chanduveetil Ahamed Saleel, 2022. "Heat Transfer Studies on Solar Parabolic trough Collector Using Corrugated Tube Receiver with Conical Strip Inserts," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    4. Khosrow Hemmatpour & Ramin Ghasemiasl & Mehrdad Malekzadeh dirin & Mohammad Amin Javadi, 2023. "Time-Transient Optimization of Electricity and Fresh Water Cogeneration Cycle Using Gas Fuel and Solar Energy," Mathematics, MDPI, vol. 11(3), pages 1-21, January.
    5. Chenyang Wang & Jialin Guo & Jingyu Li & Xiaomei Zeng & Vasiliy Pelenovich & Jun Zhang & Bing Yang & Xianbin Wang & Yu Du & Yikun Lei & Naibing Lu, 2023. "Microstructure of Surface Pollutants and Brush-Based Dry Cleaning of a Trough Concentrating Solar Power Station," Energies, MDPI, vol. 16(7), pages 1-15, April.
    6. Georgios E. Arnaoutakis & Gudrun Kocher-Oberlehner & Dimitris Al. Katsaprakakis, 2023. "Criteria-Based Model of Hybrid Photovoltaic–Wind Energy System with Micro-Compressed Air Energy Storage," Mathematics, MDPI, vol. 11(2), pages 1-15, January.
    7. Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
    8. Amirreza Javaherian & Sadaf Ghasemi & Seyed Mohammad Seyed Mahmoudi & Marc A. Rosen & Mohsen Sadeghi, 2023. "Two-Objective Optimization of a Cogeneration System Based on a Gas Turbine Integrated with Solar-Assisted Rankine and Absorption Refrigeration Cycles," Sustainability, MDPI, vol. 15(21), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Xiaolei Li & Zhifeng Wang & Ershu Xu & Linrui Ma & Li Xu & Dongming Zhao, 2019. "Dynamically Coupled Operation of Two-Tank Indirect TES and Steam Generation System," Energies, MDPI, vol. 12(9), pages 1-42, May.
    3. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    4. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    5. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    6. Li, Qing & Bai, Fengwu & Yang, Bei & Wang, Zhifeng & El Hefni, Baligh & Liu, Sijie & Kubo, Syuichi & Kiriki, Hiroaki & Han, Mingxu, 2016. "Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant," Applied Energy, Elsevier, vol. 178(C), pages 281-293.
    7. Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
    8. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    9. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Zhang, Kezhen & Liu, Jiping & Yan, Junjie, 2022. "Thermodynamic analysis on a novel bypass steam recovery system for parabolic trough concentrated solar power plants during start-up processes," Renewable Energy, Elsevier, vol. 198(C), pages 973-983.
    10. Qimei Chen & Yan Wang & Jianhan Zhang & Zhifeng Wang, 2020. "The Knowledge Mapping of Concentrating Solar Power Development Based on Literature Analysis Technology," Energies, MDPI, vol. 13(8), pages 1-15, April.
    11. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    12. Ravelli, S. & Franchini, G. & Perdichizzi, A., 2018. "Comparison of different CSP technologies for combined power and cooling production," Renewable Energy, Elsevier, vol. 121(C), pages 712-721.
    13. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    14. Yan, Hui & Chong, Daotong & Wang, Zhu & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2022. "Dynamic performance enhancement of solar-aided coal-fired power plant by control strategy optimization with solar/coal-to-power conversion characteristics," Energy, Elsevier, vol. 244(PA).
    15. Wu, Yunna & Geng, Shuai & Zhang, Haobo & Gao, Min, 2014. "Decision framework of solar thermal power plant site selection based on linguistic Choquet operator," Applied Energy, Elsevier, vol. 136(C), pages 303-311.
    16. Enkhbayar Shagdar & Bachirou Guene Lougou & Batmunkh Sereeter & Yong Shuai & Azeem Mustafa & Enkhjin Ganbold & Dongmei Han, 2022. "Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions," Energies, MDPI, vol. 15(4), pages 1-24, February.
    17. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    18. Buscemi, A. & Guarino, S. & Ciulla, G. & Lo Brano, V., 2021. "A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance," Applied Energy, Elsevier, vol. 303(C).
    19. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    20. Boukelia, T.E. & Arslan, O. & Mecibah, M.S., 2017. "Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach," Renewable Energy, Elsevier, vol. 105(C), pages 324-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922007784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.