IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023004908.html
   My bibliography  Save this article

Assessing and improving the structural robustness of global liner shipping system: A motif-based network science approach

Author

Listed:
  • Xu, Mengqiao
  • Deng, Wenhui
  • Zhu, Yifan
  • LÃœ, Linyuan

Abstract

Liner shipping carries about 70% of the total value of world's seaborne trade, and thus the robust functioning of global liner shipping network (GLSN) is essential for building robust global maritime logistics systems. However, understanding and improving the underlying structural robustness of GLSN is an important challenging topic. This paper contributes to this topic by proposing a motif-based network science approach to address two crucial tasks therein. First, based on the extensive mining of four-node motifs in the GLSN, we propose a novel node centrality metric named motif centrality to characterize the importance of a port in the GLSN, which proves its effectiveness in identifying critical ports for maintaining the GLSN structural robustness. Second, after assessing the GLSN structural robustness against some worst-case scenarios of port disruptions, we propose two motif-based link-adding strategies to improve the GLSN structural robustness. Experimental results prove their effectiveness as compared with random link-adding strategies. For further scrutinization, one strategy is extended to the individual country level and is found useful in improving the structural robustness of liner shipping connections of most countries, especially many underdeveloped maritime countries. Some practical and theoretical implications are finally discussed.

Suggested Citation

  • Xu, Mengqiao & Deng, Wenhui & Zhu, Yifan & LÃœ, Linyuan, 2023. "Assessing and improving the structural robustness of global liner shipping system: A motif-based network science approach," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004908
    DOI: 10.1016/j.ress.2023.109576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Dongming & Lin, Jing & Cai, Baoping & Liu, Bin, 2021. "Robustness of maintenance support service networks: attributes, evaluation and improvement," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    3. Marco Fugazza, 2015. "Maritime Connectivity And Trade," UNCTAD Blue Series Papers 70, United Nations Conference on Trade and Development.
    4. Jing-Jing Pan & Michael G. H. Bell & Kam-Fung Cheung & Supun Perera & Hang Yu, 2019. "Connectivity analysis of the global shipping network by eigenvalue decomposition," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(8), pages 957-966, November.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    6. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Post-Print halshs-02588551, HAL.
    7. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    9. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    10. Marco Fugazza & Jan Hoffmann, 2017. "Liner shipping connectivity as determinant of trade," Journal of Shipping and Trade, Springer, vol. 2(1), pages 1-18, December.
    11. Mengqiao Xu & Qian Pan & Alessandro Muscoloni & Haoxiang Xia & Carlo Vittorio Cannistraci, 2020. "Modular gateway-ness connectivity and structural core organization in maritime network science," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    12. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    13. Pablo E. Achurra-Gonzalez & Panagiotis Angeloudis & Nils Goldbeck & Daniel J. Graham & Konstantinos Zavitsas & Marc E. J. Stettler, 2019. "Evaluation of port disruption impacts in the global liner shipping network," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-21, December.
    14. Cao, Xian-Bin & Hong, Chen & Du, Wen-Bo & Zhang, Jun, 2013. "Improving the network robustness against cascading failures by adding links," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 35-40.
    15. Vikas Kumar Mishra & Bapi Dutta & Mark Goh & José Rui Figueira & Salvatore Greco, 2021. "A robust ranking of maritime connectivity: revisiting UNCTAD’s liner shipping connectivity index (LSCI)," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(3), pages 424-443, September.
    16. Wandelt, Sebastian & Shi, Xing & Sun, Xiaoqian, 2021. "Estimation and improvement of transportation network robustness by exploiting communities," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    17. Peng, Guan-sheng & Wu, Jun, 2016. "Optimal network topology for structural robustness based on natural connectivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 212-220.
    18. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    19. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Wei, Ye & Jin, Ying & Ma, Dingyu & Xiu, Chunliang, 2021. "Impact of colored motif characteristics on the survivability of passenger airline networks in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    21. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    22. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    3. Wu, Di & Yu, Changqing & Zhao, Yannan & Guo, Jialun, 2024. "Changes in vulnerability of global container shipping networks before and after the COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 114(C).
    4. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    6. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Wu, Jiaxin & Lu, Jing & Zhang, Lingye & Fan, Hanwen, 2024. "Spatial heterogeneity among different-sized port communities in directed-weighted global liner shipping network," Journal of Transport Geography, Elsevier, vol. 114(C).
    8. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Li, Siping & Zhou, Yaoming, 2024. "Integrating equity and efficiency into urban logistics resilience under emergency lockdowns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    10. Achilleas Tsantis & John Mangan & Agustina Calatayud & Roberto Palacin, 2023. "Container shipping: a systematic literature review of themes and factors that influence the establishment of direct connections between countries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 667-697, December.
    11. Guerrero, David & Letrouit, Lucie & Pais-Montes, Carlos, 2022. "The container transport system during Covid-19: An analysis through the prism of complex networks," Transport Policy, Elsevier, vol. 115(C), pages 113-125.
    12. Ferrari, Claudio & Persico, Luca & Tei, Alessio, 2022. "Covid-19 and seaborne trade: The Italian perspective," Research in Transportation Economics, Elsevier, vol. 93(C).
    13. J. Verschuur & E. E. Koks & J. W. Hall, 2022. "Ports’ criticality in international trade and global supply-chains," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    15. Olabisi Michael Olapoju, 2023. "Appraising the impact of COVID-19 on trading volume of selected vessel types in sub-Saharan Africa," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-12, December.
    16. Das, Sai Saranga & Raman, Karthik, 2022. "Effect of dormant spare capacity on the attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    17. Yue, Xiongping & Mu, Dong & Wang, Chao & Ren, Huanyu & Peng, Rui & Du, Jianbang, 2024. "Critical risks in global supply networks: A static structure and dynamic propagation perspective," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Wei, Wei & Liu, Yuting & Yang, Weidong, 2023. "PTUM: Efficient shielding of large-scale network through pruned tree-cut mapping," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    19. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    20. Jan Hoffmann & Naima Saeed & Sigbjørn Sødal, 2020. "Liner shipping bilateral connectivity and its impact on South Africa’s bilateral trade flows," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(3), pages 473-499, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.