IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001614.html
   My bibliography  Save this article

A deep learning dismantling approach for understanding the structural vulnerability of complex networks

Author

Listed:
  • Hong, Li
  • Xu, Mengqiao
  • Liu, Yu
  • Zhang, Xuemei
  • Fan, Changjun

Abstract

Understanding the structural vulnerability of real-world complex networks is a crucial issue. This issue can be addressed by solving the so-called network dismantling problem, which aims to identify the smallest set of nodes for the fastest dismantling of a network. The network dismantling problem is a computationally challenging task due to its NP-hard nature. The powerful learning capabilities of machine learning methods provide a new perspective for solving this problem. Most existing deep learning methods are based on supervised learning, which rely on pre-labeled training data. These existing methods have achieved promising results in completely dismantling a network. However, they may not perform very well in identifying a very small number of nodes whose removal would significantly degrade—though far from fully dismantle—the network performance. This issue is particularly relevant to many real-world networks like transportation and infrastructure networks. This paper proposes a novel unsupervised learning model called GASC (Graph Attention network integrated with Shortcut Connections mechanism), to address this issue regarding the network dismantling problem. The GASC model employs the graph attention network to learn the underlying features of a network's topological structure and integrates the shortcut connections mechanism to overcome the vanishing gradients problem. Besides, we incorporate a network tailoring method to further improve the performance of our model. We performed comprehensive experiments on both synthetic networks and various real-world networks. The results validate that the proposed approach outperforms existing state-of-the-art methods and demonstrates significant robustness.

Suggested Citation

  • Hong, Li & Xu, Mengqiao & Liu, Yu & Zhang, Xuemei & Fan, Changjun, 2025. "A deep learning dismantling approach for understanding the structural vulnerability of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001614
    DOI: 10.1016/j.chaos.2025.116148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Mengqiao & Deng, Wenhui & Zhu, Yifan & LÜ, Linyuan, 2023. "Assessing and improving the structural robustness of global liner shipping system: A motif-based network science approach," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    2. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Yang, Shulan & Hou, Zhiwei & Chen, Hongbo, 2023. "Evaluation of vulnerability of MAV/UAV collaborative combat network based on complex network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Wen-Long Shang & Yanyan Chen & Chengcheng Song & Washington Y. Ochieng, 2020. "Robustness Analysis of Urban Road Networks from Topological and Operational Perspectives," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, August.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    6. Cicchini, Tomás & Caridi, Inés & Ermann, Leonardo, 2024. "Robustness of the public transport network against attacks on its routes," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    7. Guo, Haoming & Wang, Shuangling & Yan, Xuefeng & Zhang, Kecheng, 2024. "Node importance evaluation method of complex network based on the fusion gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    8. Jiang, Wenjun & Fan, Tianlong & Li, Changhao & Zhang, Chuanfu & Zhang, Tao & Luo, Zong-fu, 2024. "Comprehensive analysis of network robustness evaluation based on convolutional neural networks with spatial pyramid pooling," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    9. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    10. Lei, Mingli & Cheong, Kang Hao, 2022. "Node influence ranking in complex networks: A local structure entropy approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Feng, Zhidan & Song, Huimin & Qi, Xingqin, 2024. "A novel algorithm for the generalized network dismantling problem based on dynamic programming," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    13. Marco Di Summa & Andrea Grosso & Marco Locatelli, 2012. "Branch and cut algorithms for detecting critical nodes in undirected graphs," Computational Optimization and Applications, Springer, vol. 53(3), pages 649-680, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Wenjun & Li, Peiyan & Fan, Tianlong & Li, Ting & Zhang, Chuan-fu & Zhang, Tao & Luo, Zong-fu, 2024. "Scalable rapid framework for evaluating network worst robustness with machine learning," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Zhao, Zhili & Liu, Xupeng & Sun, Yue & Zhang, Nana & Hu, Ahui & Wang, Shiling & Tu, Yingyuan, 2025. "Influence maximization based on bottom-up community merging," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    3. Gokhan Karakose & Ronald G. McGarvey, 2019. "Optimal Detection of Critical Nodes: Improvements to Model Structure and Performance," Networks and Spatial Economics, Springer, vol. 19(1), pages 1-26, March.
    4. Shen, Xiaoda & Wang, Zhigang & Deng, Ye & Wu, Jun, 2024. "Spatial network disintegration with heterogeneous cost," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    5. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    6. Ma, Meng & Liu, Sanyang & Bai, Yiguang, 2025. "Hypernetwork disintegration with integrated metrics-driven evolutionary algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
    7. Zhang, Hai-Feng & Wang, Hao-Ren & Xiang, Bing-Bing & Wang, Huan, 2024. "Robustness study of hybrid hypergraphs," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    8. Jiang, Wenjun & Fan, Tianlong & Li, Changhao & Zhang, Chuanfu & Zhang, Tao & Luo, Zong-fu, 2024. "Comprehensive analysis of network robustness evaluation based on convolutional neural networks with spatial pyramid pooling," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    9. Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    10. T. N. Dinh & M. T. Thai & H. T. Nguyen, 2014. "Bound and exact methods for assessing link vulnerability in complex networks," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 3-24, July.
    11. Faramondi, Luca & Setola, Roberto & Panzieri, Stefano & Pascucci, Federica & Oliva, Gabriele, 2018. "Finding critical nodes in infrastructure networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 20(C), pages 3-15.
    12. Hu, Tianzhen & Zong, Yan & Lu, Ningyun & Jiang, Bin, 2025. "Toward the resilience of UAV swarms with percolation theory under attacks," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    13. Wang, Peng & Ling, Guang & Zhao, Pei & Pan, Wenqiu & Ge, Ming-Feng, 2024. "Identification of important nodes in multi-layer hypergraphs based on fuzzy gravity model and node centrality distribution characteristics," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    14. repec:plo:pone00:0008001 is not listed on IDEAS
    15. Valentina Morandi, 2024. "Bridging the user equilibrium and the system optimum in static traffic assignment: a review," 4OR, Springer, vol. 22(1), pages 89-119, March.
    16. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    17. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    18. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    19. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    20. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    21. Ixandra Achitouv, 2025. "Dynamical analysis of financial stocks network: Improving forecasting using network properties," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.