IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925000918.html
   My bibliography  Save this article

Influence maximization based on bottom-up community merging

Author

Listed:
  • Zhao, Zhili
  • Liu, Xupeng
  • Sun, Yue
  • Zhang, Nana
  • Hu, Ahui
  • Wang, Shiling
  • Tu, Yingyuan

Abstract

Influence maximization (IM) is a prominent topic in the complex network analysis domain, and its goal is to identify the fewest nodes to achieve the maximum influence in a network. There are numerous IM methods that have emerged, among which community-based methods are potentially advantageous due to their ability to utilize community structure information and reduce time complexity through reduced search space. However, the key to these methods is a deep understanding of community structures, and their accuracy depends heavily on filtering candidate nodes and identifying seed nodes. To address these challenges, this study proposes a novel community-based IM method, BUCIM, that selects both candidate and seed nodes in different but more reasonable ways. This study considers both bridge nodes and core nodes within communities as candidate nodes. Differing from the related efforts, BUCIM selects bridge nodes by considering their heterogeneity of external links and selects core nodes by combining different topology-based centrality metrics. To select seed nodes in large complex networks from a global perspective, potential candidate nodes are discovered by iteratively merging communities based on their spreading influence and attraction coefficient. Moreover, to reduce influence overlaps, seed nodes are selected by considering both the spreading influence of a candidate node and its minimum distance to other candidate nodes. Experimental results on nine real-world networks demonstrate that BUCIM not only outperforms state-of-the-art methods in both influence scale and coverage redundancy but also has reasonable time complexity.

Suggested Citation

  • Zhao, Zhili & Liu, Xupeng & Sun, Yue & Zhang, Nana & Hu, Ahui & Wang, Shiling & Tu, Yingyuan, 2025. "Influence maximization based on bottom-up community merging," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000918
    DOI: 10.1016/j.chaos.2025.116078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    2. Wu, Hongqian & Deng, Hongzhong & Li, Jichao & Wang, Yangjun & Yang, Kewei, 2024. "Hunting for influential nodes based on radiation theory in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    3. Guo, Haoming & Wang, Shuangling & Yan, Xuefeng & Zhang, Kecheng, 2024. "Node importance evaluation method of complex network based on the fusion gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Li, Qi & Cheng, Le & Wang, Wei & Li, Xianghua & Li, Shudong & Zhu, Peican, 2023. "Influence maximization through exploring structural information," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    5. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    6. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Zhang, Jianhua & Zhou, Yu & Wang, Shuliang & Min, Qinjie, 2024. "Critical station identification and robustness analysis of urban rail transit networks based on comprehensive vote-rank algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    8. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    9. Kazemzadeh, Farzaneh & Safaei, Ali Asghar & Mirzarezaee, Mitra, 2022. "Influence maximization in social networks using effective community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    10. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    11. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Tang, Jianxin & Zhang, Ruisheng & Yao, Yabing & Yang, Fan & Zhao, Zhili & Hu, Rongjing & Yuan, Yongna, 2019. "Identification of top-k influential nodes based on enhanced discrete particle swarm optimization for influence maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 477-496.
    13. Bo Zhang & Yufeng Wang & Qun Jin & Jianhua Ma, 2015. "A Pagerank-Inspired Heuristic Scheme for Influence Maximization in Social Networks," International Journal of Web Services Research (IJWSR), IGI Global, vol. 12(4), pages 48-62, October.
    14. Samir, Ahmed M. & Rady, Sherine & Gharib, Tarek F., 2021. "LKG: A fast scalable community-based approach for influence maximization problem in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Meng, Lei & Xu, Guiqiong & Dong, Chen, 2025. "An improved gravity model for identifying influential nodes in complex networks considering asymmetric attraction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    3. Zhong, Xingju & Liu, Renjing, 2024. "Identifying critical nodes in interdependent networks by GA-XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Li, Jing & Lu, Qing-Chang & Xu, Peng-Cheng & Liu, Liping & Wang, Shixin, 2025. "Critical station identification for cascading failure mitigation considering the Lyapunov-stability of metro stations," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    5. Zhu, Xiaoyu & Hao, Rongxia, 2025. "Finding influential nodes in complex networks by integrating nodal intrinsic and extrinsic centrality," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    6. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Wu, Rui-Jie & Kong, Yi-Xiu & Di, Zengru & Zhang, Yi-Cheng & Shi, Gui-Yuan, 2022. "Analytical solution to the k-core pruning process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Guo, Haoming & Wang, Shuangling & Yan, Xuefeng & Zhang, Kecheng, 2024. "Node importance evaluation method of complex network based on the fusion gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    9. Chen, Zhichao & Zheng, Changjiang & Tao, Tongtong & Wang, Yanyan, 2024. "Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Ullah, Aman & Meng, Yahui, 2025. "Finding influential nodes via graph embedding and hybrid centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    11. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Hong, Li & Xu, Mengqiao & Liu, Yu & Zhang, Xuemei & Fan, Changjun, 2025. "A deep learning dismantling approach for understanding the structural vulnerability of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    13. Wang, Peng & Ling, Guang & Zhao, Pei & Pan, Wenqiu & Ge, Ming-Feng, 2024. "Identification of important nodes in multi-layer hypergraphs based on fuzzy gravity model and node centrality distribution characteristics," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    14. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    15. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    16. Jiang, Jianhua & Yang, Xi & Meng, Xianqiu & Li, Keqin, 2020. "Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    17. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    18. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
    19. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    20. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.