IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics095183202400245x.html
   My bibliography  Save this article

Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion

Author

Listed:
  • Chen, Zhichao
  • Zheng, Changjiang
  • Tao, Tongtong
  • Wang, Yanyan

Abstract

The cascading failures caused by traffic congestion diffusion may deteriorate traffic network reliability. Comprehending urban traffic congestion mechanisms is essential for road network planning and traffic management against cascading failures. To uncover this, the reliability of urban road traffic network (URTN) under cascading failure considering different attack strategies is analyzed. The cascading failure model is established based on the improved nonlinear load-capacity relationship. Five kinds of attack strategies including Strength Attack (SA), Betweenness Centrality Attack (BCA), Eigenvector Centrality Attack (ECA), Closeness Centrality Attack (CCA), and Random Attack (RA) are selected. In particular, the capacity affected by traffic congestion is considered, providing a new perspective for the study of traffic congestion diffusion. A state update equation for networks is proposed to simulate the network congestion diffusion. Finally, a case study is conducted by using the URTN of Shanghai as the background. The results show that the network will experience large-scale congestion when high-importance nodes are attacked. The congestion degree is the highest under CCA strategy, network efficiency is the lowest under ECA strategy, and traffic quality is the poorest under CCA strategy. As the congestion critical failure threshold decreases, the speed and scale of cascading failures caused by traffic congestion diffusion are greater. Maintaining proper traffic management and control capability can largely reduce the cascading effect to a great extent and improve the reliability of the network. The results can provide a research basis for traffic management to improve network reliability.

Suggested Citation

  • Chen, Zhichao & Zheng, Changjiang & Tao, Tongtong & Wang, Yanyan, 2024. "Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s095183202400245x
    DOI: 10.1016/j.ress.2024.110171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400245X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s095183202400245x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.