IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v22y2024i1d10.1007_s10288-023-00540-w.html
   My bibliography  Save this article

Bridging the user equilibrium and the system optimum in static traffic assignment: a review

Author

Listed:
  • Valentina Morandi

    (University of Brescia)

Abstract

Solving the road congestion problem is one of the most pressing issues in modern cities since it causes time wasting, pollution, higher industrial costs and huge road maintenance costs. Advances in ITS technologies and the advent of autonomous vehicles are changing mobility dramatically. They enable the implementation of a coordination mechanism, called coordinated traffic assignment, among the sat-nav devices aiming at assigning paths to drivers to eliminate congestion and to reduce the total travel time in traffic networks. Among possible congestion avoidance methods, coordinated traffic assignment is a valuable choice since it does not involve huge investments to expand the road network. Traffic assignments are traditionally devoted to two main perspectives on which the well-known Wardropian principles are inspired: the user equilibrium and the system optimum. User equilibrium is a user-driven traffic assignment in which each user chooses the most convenient path selfishly. It guarantees that fairness among users is respected since, when the equilibrium is reached, all users sharing the same origin and destination will experience the same travel time. The main drawback in a user equilibrium is that the system total travel time is not minimized and, hence, the so-called Price of Anarchy is paid. On the other hand, the system optimum is an efficient system-wide traffic assignment in which drivers are routed on the network in such a way the total travel time is minimized, but users might experience travel times that are higher than the other users travelling from the same origin to the same destination, affecting the compliance. Thus, drawbacks in implementing one of the two assignments can be overcome by hybridizing the two approaches, aiming at bridging users’ fairness to system-wide efficiency. In the last decades, a significant number of attempts have been done to bridge fairness among users and system efficiency in traffic assignments. The survey reviews the state-of-the-art of these trade-off approaches.

Suggested Citation

  • Valentina Morandi, 2024. "Bridging the user equilibrium and the system optimum in static traffic assignment: a review," 4OR, Springer, vol. 22(1), pages 89-119, March.
  • Handle: RePEc:spr:aqjoor:v:22:y:2024:i:1:d:10.1007_s10288-023-00540-w
    DOI: 10.1007/s10288-023-00540-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-023-00540-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-023-00540-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaj Holmberg & Di Yuan, 2003. "A Multicommodity Network-Flow Problem with Side Constraints on Paths Solved by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 42-57, February.
    2. Grazia Speranza, M., 2018. "Trends in transportation and logistics," European Journal of Operational Research, Elsevier, vol. 264(3), pages 830-836.
    3. Levy, Nadav & Klein, Ido & Ben-Elia, Eran, 2018. "Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach," Research in Transportation Economics, Elsevier, vol. 68(C), pages 46-55.
    4. Watling, David, 2006. "User equilibrium traffic network assignment with stochastic travel times and late arrival penalty," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1539-1556, December.
    5. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    6. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    7. Angelelli, E. & Arsik, I. & Morandi, V. & Savelsbergh, M. & Speranza, M.G., 2016. "Proactive route guidance to avoid congestion," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 1-21.
    8. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2007. "Fast, Fair, and Efficient Flows in Networks," Operations Research, INFORMS, vol. 55(2), pages 215-225, April.
    9. Di, Xuan & Liu, Henry X., 2016. "Boundedly rational route choice behavior: A review of models and methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 142-179.
    10. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.
    11. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    12. Erel Avineri, 2006. "The Effect of Reference Point on Stochastic Network Equilibrium," Transportation Science, INFORMS, vol. 40(4), pages 409-420, November.
    13. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    14. Xu, Hongli & Lou, Yingyan & Yin, Yafeng & Zhou, Jing, 2011. "A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 311-328, February.
    15. O'Hare, Steven J. & Connors, Richard D. & Watling, David P., 2016. "Mechanisms that govern how the Price of Anarchy varies with travel demand," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 55-80.
    16. Vincenzo Bonifaci & Tobias Harks & Guido Schäfer, 2010. "Stackelberg Routing in Arbitrary Networks," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 330-346, May.
    17. Guo, Xiaolei & Yang, Hai, 2009. "User heterogeneity and bi-criteria system optimum," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 379-390, May.
    18. Hani S. Mahmassani & Gang-Len Chang, 1987. "On Boundedly Rational User Equilibrium in Transportation Systems," Transportation Science, INFORMS, vol. 21(2), pages 89-99, May.
    19. Bhaskar, Umang & Ligett, Katrina & Schulman, Leonard J. & Swamy, Chaitanya, 2019. "Achieving target equilibria in network routing games without knowing the latency functions," Games and Economic Behavior, Elsevier, vol. 118(C), pages 533-569.
    20. Di, Xuan & He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2014. "Braess paradox under the boundedly rational user equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 86-108.
    21. Pitu Mirchandani & Hossein Soroush, 1987. "Generalized Traffic Equilibrium with Probabilistic Travel Times and Perceptions," Transportation Science, INFORMS, vol. 21(3), pages 133-152, August.
    22. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    23. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong & Yang, Hai, 2012. "Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1273-1287.
    24. Riccardo Colini-Baldeschi & Roberto Cominetti & Panayotis Mertikopoulos & Marco Scarsini, 2020. "When Is Selfish Routing Bad? The Price of Anarchy in Light and Heavy Traffic," Operations Research, INFORMS, vol. 68(2), pages 411-434, March.
    25. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    26. Lou, Yingyan & Yin, Yafeng & Lawphongpanich, Siriphong, 2010. "Robust congestion pricing under boundedly rational user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 15-28, January.
    27. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    28. Di, Xuan & Liu, Henry X. & Pang, Jong-Shi & Ban, Xuegang (Jeff), 2013. "Boundedly rational user equilibria (BRUE): Mathematical formulation and solution sets," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 300-313.
    29. Takashi Akamatsu & Benjamin Heydecker, 2003. "Detecting Dynamic Traffic Assignment Capacity Paradoxes in Saturated Networks," Transportation Science, INFORMS, vol. 37(2), pages 123-138, May.
    30. Di, Xuan & Liu, Henry X. & Ban, Xuegang (Jeff), 2016. "Second best toll pricing within the framework of bounded rationality," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 74-90.
    31. Cortés, Pablo & Muñuzuri, Jesús & Guadix, José & Onieva, Luis, 2013. "Optimal algorithm for the demand routing problem in multicommodity flow distribution networks with diversification constraints and concave costs," International Journal of Production Economics, Elsevier, vol. 146(1), pages 313-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eikenbroek, Oskar A.L. & Still, Georg J. & van Berkum, Eric C. & Kern, Walter, 2018. "The Boundedly Rational User Equilibrium: A parametric analysis with application to the Network Design Problem," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 1-17.
    2. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    3. Di, Xuan & Liu, Henry X., 2016. "Boundedly rational route choice behavior: A review of models and methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 142-179.
    4. Hongli Xu & Hai Yang & Jing Zhou & Yafeng Yin, 2017. "A Route Choice Model with Context-Dependent Value of Time," Transportation Science, INFORMS, vol. 51(2), pages 536-548, May.
    5. Qinghui Xu & Xiangfeng Ji, 2020. "User Equilibrium Analysis Considering Travelers’ Context-Dependent Route Choice Behavior on the Risky Traffic Network," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    6. Mahdi Takalloo & Changhyun Kwon, 2019. "On the Price of Satisficing in Network User Equilibria," Papers 1911.07914, arXiv.org.
    7. Danczyk, Adam & Di, Xuan & Liu, Henry X. & Levinson, David M., 2017. "Unexpected versus expected network disruption: Effects on travel behavior," Transport Policy, Elsevier, vol. 57(C), pages 68-78.
    8. Luan, Xiaojie & Eikenbroek, Oskar A.L. & Corman, Francesco & van Berkum, Eric C., 2024. "Passenger social rerouting strategies in capacitated public transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    9. Di, Xuan & Liu, Henry X. & Ban, Xuegang (Jeff), 2016. "Second best toll pricing within the framework of bounded rationality," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 74-90.
    10. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    11. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    12. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    13. Hongbo Ye & Hai Yang, 2017. "Rational Behavior Adjustment Process with Boundedly Rational User Equilibrium," Transportation Science, INFORMS, vol. 51(3), pages 968-980, August.
    14. Bao, Yue & Gao, Ziyou & Xu, Meng & Sun, Huijun & Yang, Hai, 2015. "Travel mental budgeting under road toll: An investigation based on user equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 1-17.
    15. Xuan Di & Henry X. Liu & Shanjiang Zhu & David M. Levinson, 2017. "Indifference bands for boundedly rational route switching," Transportation, Springer, vol. 44(5), pages 1169-1194, September.
    16. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Li, Xinwei, 2018. "Day-to-day departure time choice under bounded rationality in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 832-849.
    17. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    18. Xu, Hongli & Lou, Yingyan & Yin, Yafeng & Zhou, Jing, 2011. "A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 311-328, February.
    19. Eikenbroek, Oskar A.L. & Still, Georg J. & van Berkum, Eric C., 2022. "Improving the performance of a traffic system by fair rerouting of travelers," European Journal of Operational Research, Elsevier, vol. 299(1), pages 195-207.
    20. Xiangfeng Ji & Xuegang (Jeff) Ban & Mengtian Li & Jian Zhang & Bin Ran, 2017. "Non-expected Route Choice Model under Risk on Stochastic Traffic Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 777-807, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:22:y:2024:i:1:d:10.1007_s10288-023-00540-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.