IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022004653.html
   My bibliography  Save this article

Modeling dynamic environment effects on dependent failure processes with varying failure thresholds

Author

Listed:
  • Wu, Bei
  • Wei, Xiaohua
  • Zhang, Yamei
  • Bai, Sijun

Abstract

Devices usually fail due to multiple dependent competing failure processes resulting from internal degradation and random shocks, whose behavior may vary in different environments. This paper focuses on systems suffering from randomly occurring shocks described by Poisson processes and internal degradation characterized by linear path models simultaneously, where the wear rate, shock arrival rate, shock load size, and shock damage amount are modulated by Markovian environments, especially the hard failure threshold differs in distinct environments. Reliability analysis is performed where analytical formulas and simulation algorithms for computing reliability indexes of systems are provided, such as the reliability function. Two maintenance models are developed for systems, including a real-time maintenance policy where the computation formula for the availability function is derived, and a periodic inspection policy in which an optimization model is proposed to find the optimal inspection interval that minimizes the average long-run cost rate. Finally, an illustrative example of floating offshore wind turbine systems is given to demonstrate possible applications of the developed models and proposed methods.

Suggested Citation

  • Wu, Bei & Wei, Xiaohua & Zhang, Yamei & Bai, Sijun, 2023. "Modeling dynamic environment effects on dependent failure processes with varying failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004653
    DOI: 10.1016/j.ress.2022.108848
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tingting Huang & Yuepu Zhao & David W. Coit & Loon-Ching Tang, 2021. "Reliability assessment and lifetime prediction of degradation processes considering recoverable shock damages," IISE Transactions, Taylor & Francis Journals, vol. 53(5), pages 614-628, May.
    2. Alan Hawkes & Lirong Cui & Zhihua Zheng, 2011. "Modeling the evolution of system reliability performance under alternative environments," IISE Transactions, Taylor & Francis Journals, vol. 43(11), pages 761-772.
    3. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    4. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Eryilmaz, Serkan & Kan, Cihangir, 2019. "Reliability and optimal replacement policy for an extreme shock model with a change point," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    6. van der Loos, Adriaan & Normann, Håkon E. & Hanson, Jens & Hekkert, Marko P., 2021. "The co-evolution of innovation systems and context: Offshore wind in Norway and the Netherlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Gao, Hongda & Cui, Lirong & Kong, Dejing, 2018. "Reliability analysis for a Wiener degradation process model under changing failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 1-8.
    8. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Yan, Tao & Lei, Yaguo & Li, Naipeng & Wang, Biao & Wang, Wenting, 2021. "Degradation modeling and remaining useful life prediction for dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Zhou, Xiaojun & Wu, Changjie & Li, Yanting & Xi, Lifeng, 2016. "A preventive maintenance model for leased equipment subject to internal degradation and external shock damage," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 1-7.
    11. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    12. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Li, Ting & He, Shuguang & Zhao, Xiujie, 2022. "Optimal warranty policy design for deteriorating products with random failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    14. Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
    15. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    16. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2021. "Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Pedro Nielsen Rotta & Pedro L. Valls Pereira, 2016. "Analysis of contagion from the dynamic conditional correlation model with Markov Regime switching," Applied Economics, Taylor & Francis Journals, vol. 48(25), pages 2367-2382, May.
    19. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
    20. Zhao, Bing & Yue, Dequan & Liao, Haitao & Liu, Yuanhui & Zhang, Xiaohong, 2021. "Performance analysis and optimization of a cold standby system subject to δ-shocks and imperfect repairs," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    21. Cheng, Zhengshun & Madsen, Helge Aagaard & Chai, Wei & Gao, Zhen & Moan, Torgeir, 2017. "A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines," Renewable Energy, Elsevier, vol. 108(C), pages 207-219.
    22. Deloux, E. & Castanier, B. & Bérenguer, C., 2009. "Predictive maintenance policy for a gradually deteriorating system subject to stress," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 418-431.
    23. Austin J. Lemoine & Michael L. Wenocur, 1985. "On failure modeling," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(3), pages 497-508, August.
    24. Min Gong & Serkan Eryilmaz & Min Xie, 2020. "Reliability assessment of system under a generalized cumulative shock model," Journal of Risk and Reliability, , vol. 234(1), pages 129-137, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gan, Shuyuan & Hu, Hengheng & Coit, David W., 2023. "Maintenance optimization considering the mutual dependence of the environment and system with decreasing effects of imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Wu, Bei & Ding, Dong, 2022. "A gamma process based model for systems subject to multiple dependent competing failure processes under Markovian environments," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Huang, Yeu-Shiang & Fang, Chih-Chiang & Lu, Chang-Ming & (Bill) Tseng, Tzu-Liang, 2022. "Optimal Warranty Policy for Consumer Electronics with Dependent Competing Failure Processes," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Xu, Qinqin & Zhu, Yuanguo, 2022. "Reliability modeling of uncertain random fractional differential systems with competitive failures," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Liu, Qiannan & Ma, Lin & Wang, Naichao & Chen, Ankang & Jiang, Qihang, 2022. "A condition-based maintenance model considering multiple maintenance effects on the dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Zhao, Xian & Qi, Xin & Wang, Xiaoyue, 2023. "Reliability assessment for coherent systems operating under a generalized mixed shock model with multiple change points of the environment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Feng, Tingting & Li, Shichao & Guo, Liang & Gao, Hongli & Chen, Tao & Yu, Yaoxiang, 2023. "A degradation-shock dependent competing failure processes based method for remaining useful life prediction of drill bit considering time-shifting sudden failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Cao, Shihao & Wang, Zhihua & Liu, Chengrui & Wu, Qiong & Li, Junxing & Ouyang, Xiangmin, 2023. "A novel solution for comprehensive competing failure process considering two-phase degradation and non-Poisson shock," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    13. Kang, Fengming & Cui, Lirong & Ye, Zhisheng & Zhou, Yu, 2024. "Reliability analysis for systems with self-healing mechanism in degradation-shock dependence processes with changing degradation rate," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Gan, Shuyuan & Hu, Hengheng & Coit, David W., 2023. "Maintenance optimization considering the mutual dependence of the environment and system with decreasing effects of imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2023. "Reliability of a mixed δ-shock model with a random change point in shock magnitude distribution and an optimal replacement policy," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Chen, Ying & Wang, Yanfang & Li, Shumin & Kang, Rui, 2023. "Hybrid uncertainty quantification of dependent competing failure process with chance theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    18. Li, Ting & He, Shuguang & Zhao, Xiujie & Liu, Bin, 2023. "Warranty service contracts design for deteriorating products with maintenance duration commitments," International Journal of Production Economics, Elsevier, vol. 264(C).
    19. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    20. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.