IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002254.html
   My bibliography  Save this article

Reliability assessment under continuous fatigue degradation and shock based on Markov renewal process

Author

Listed:
  • Jiang, Shan
  • Jia, Xujie

Abstract

In this paper, the Markov renewal process is developed to characterize the system subjected to multiple failure mechanisms. The evolution of the system state is defined as a semi-Markov process whose kernels are derived considering two shock scenarios. One is the mixed shock scenario, combining the extreme shock model and the δ-shock model, while the other is the cumulative shock scenario. Throughout the derivation, the mutual interactions between continuous fatigue degradation and shock are taken into account. Shocks lead to degradation increment and nonlinear fatigue damage accumulation, while the fatigue process intensifies damage due to shocks. Notably, the nonlinear fatigue damage accumulation involves retardation effects. In this study, a reliability model focused on the mutual interaction among failure modes is derived from the kernel of the semi-Markov process. The mean time to failure (MTTF) is also calculated. Moreover, the impacts of the shock thresholds on MTTF are discussed. Finally, two case studies based on real fatigue testing data of steel 350WT and aluminum alloy 2024-T351 are provided to illustrate the implementation and effectiveness of the proposed model.

Suggested Citation

  • Jiang, Shan & Jia, Xujie, 2024. "Reliability assessment under continuous fatigue degradation and shock based on Markov renewal process," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002254
    DOI: 10.1016/j.ress.2024.110151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.