IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v214y2021ics0951832021003136.html
   My bibliography  Save this article

A multicriteria outranking approach for ship collision risk assessment

Author

Listed:
  • Silveira, P.
  • Teixeira, A.P.
  • Figueira, J.R.
  • Guedes Soares, C.

Abstract

The paper presents a judgmental expert-based process to assess the ship collision risk using the ELECTRE Tri-nC multiple criteria outranking method. The approach first establishes a set of criteria deemed important by navigation experts, all of them experienced nautical officers, to assess the collision risk between two ships in open waters. A deck of cards-based method is then used to determine the weights of each criterion, according to the experts’ preferences. Finally, risk categories chosen by the experts are characterised in terms of multiple reference scenarios, also provided by the experts, and the ELECTRE Tri-nC method is used to assign validation scenarios to the risk categories. The results are compared with the experts’ assessments of the collision risk for the same scenarios and also with the individual assessments made by three experts that have not participated in the development of the decision model.

Suggested Citation

  • Silveira, P. & Teixeira, A.P. & Figueira, J.R. & Guedes Soares, C., 2021. "A multicriteria outranking approach for ship collision risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021003136
    DOI: 10.1016/j.ress.2021.107789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021003136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    2. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Hänninen, Maria & Kujala, Pentti, 2012. "Influences of variables on ship collision probability in a Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 27-40.
    5. Almeida-Dias, J. & Figueira, J.R. & Roy, B., 2010. "Electre Tri-C: A multiple criteria sorting method based on characteristic reference actions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 565-580, August.
    6. Goerlandt, Floris & Kujala, Pentti, 2011. "Traffic simulation based ship collision probability modeling," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 91-107.
    7. Figueira, José Rui & Roy, Bernard, 2009. "A note on the paper, "Ranking irregularities when evaluating alternatives by using some ELECTRE methods", by Wang and Triantaphyllou, Omega (2008)," Omega, Elsevier, vol. 37(3), pages 731-733, June.
    8. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    9. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
    10. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    11. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    12. Almeida-Dias, J. & Figueira, J.R. & Roy, B., 2012. "A multiple criteria sorting method where each category is characterized by several reference actions: The Electre Tri-nC method," European Journal of Operational Research, Elsevier, vol. 217(3), pages 567-579.
    13. Kujala, P. & Hänninen, M. & Arola, T. & Ylitalo, J., 2009. "Analysis of the marine traffic safety in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1349-1357.
    14. Kim, Do-Hoon, 2020. "Human factors influencing the ship operator's perceived risk in the last moment of collision encounter," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    15. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    16. Dai, Lijuan & Ehlers, Sören & Rausand, Marvin & Utne, Ingrid Bouwer, 2013. "Risk of collision between service vessels and offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 18-31.
    17. Montewka, Jakub & Hinz, Tomasz & Kujala, Pentti & Matusiak, Jerzy, 2010. "Probability modelling of vessel collisions," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 573-589.
    18. Figueira, Jose & Roy, Bernard, 2002. "Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure," European Journal of Operational Research, Elsevier, vol. 139(2), pages 317-326, June.
    19. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2021. "Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Yu, Qing & Liu, Kezhong & Yang, Zhisen & Wang, Hongbo & Yang, Zaili, 2021. "Geometrical risk evaluation of the collisions between ships and offshore installations using rule-based Bayesian reasoning," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pinho, Margarida & Costa, Ana Sara & Meneses, Marta & Manso, Joana, 2023. "A multiple criteria sorting method for supporting the maintenance management of medical ventilators: The case of Hospital da Luz Lisboa," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    2. Ahmed, Umair & Carpitella, Silvia & Certa, Antonella, 2021. "An integrated methodological approach for optimising complex systems subjected to predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Elidolu, Gizem & Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan & Arslanoglu, Yasin, 2023. "Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended Evidential Reasoning (ER) and Rule-based Bayesian Network (RBN) approach," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Li, Mengxia & Mou, Junmin & Chen, Pengfei & Rong, Hao & Chen, Linying & van Gelder, P.H.A.J.M., 2022. "Towards real-time ship collision risk analysis: An improved R-TCR model considering target ship motion uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Gao, Dawei & Zhu, Yongsheng & Yan, Ke & Soares, C. Guedes, 2024. "Deep learning–based framework for regional risk assessment in a multi–ship encounter situation based on the transformer network," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Zyczkowski, Marcin & Szlapczynski, Rafal, 2023. "Collision risk-informed weather routing for sailboats," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Hasan Mahbub Tusher & Ziaul Haque Munim & Theo E. Notteboom & Tae-Eun Kim & Salman Nazir, 2022. "Cyber security risk assessment in autonomous shipping," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 208-227, June.
    11. Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    12. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Li, Baode & Lu, Jing & Li, Jing & Zhu, Xuebin & Huang, Chuan & Su, Wan, 2022. "Scenario evolutionary analysis for maritime emergencies using an ensemble belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2021. "Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Xin, Xuri & Liu, Kezhong & Yang, Zaili & Zhang, Jinfen & Wu, Xiaolie, 2021. "A probabilistic risk approach for the collision detection of multi-ships under spatiotemporal movement uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Cai, Mingyou & Zhang, Jinfen & Zhang, Di & Yuan, Xiaoli & Soares, C. Guedes, 2021. "Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    12. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Szlapczynski, Rafal & Szlapczynska, Joanna, 2021. "A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    15. Zyczkowski, Marcin & Szlapczynski, Rafal, 2023. "Collision risk-informed weather routing for sailboats," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Du, Lei & Banda, Osiris A. Valdez & Huang, Yamin & Goerlandt, Floris & Kujala, Pentti & Zhang, Weibin, 2021. "An empirical ship domain based on evasive maneuver and perceived collision risk," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    19. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021003136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.