IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v209y2021ics0951832021000193.html
   My bibliography  Save this article

Group maintenance optimization of subsea Xmas trees with stochastic dependency

Author

Listed:
  • Fan, Dongming
  • Zhang, Aibo
  • Feng, Qiang
  • Cai, Baoping
  • Liu, Yiliu
  • Ren, Yi

Abstract

Subsea Xmas trees (XTs) are vital equipment for offshore oil and gas development. Due to a long and continuous operation, components of XTs often become vulnerable subjected to degradation and unexpected failures. Due to the uncertainties of subsea operation and fault tolerance design, current maintenances on heterogeneous components, which are assumed to be independent of each other, perform separately. Only one PM mode (imperfect or perfect) is considered. However, these assumptions impede the application of state-of-the-art research results on the maintenance of this equipment. Therefore, for XTs with stochastic dependency, this study proposes a group maintenance optimization approach that combines maintenance activities to reduce maintenance costs. Reduction factors are introduced to measure the effects of various preventive maintenance (PM) actions, and the optimal component-level PM intervals can be obtained. An improved group strategy can be explored in consideration of stochastic dependency and opportunity maintenance. Utilizing the collaborative particle swarm optimization (CPSO) algorithm, the cost of an optimal group maintenance plan can be minimized while maintaining the availability. The uses and advantages of the proposed group maintenance approach are illustrated by a case study on a Horizon Xmas tree with a 14-component system.

Suggested Citation

  • Fan, Dongming & Zhang, Aibo & Feng, Qiang & Cai, Baoping & Liu, Yiliu & Ren, Yi, 2021. "Group maintenance optimization of subsea Xmas trees with stochastic dependency," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000193
    DOI: 10.1016/j.ress.2021.107450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Yi & Fan, Dongming & Feng, Qiang & Wang, Zili & Sun, Bo & Yang, Dezhen, 2019. "Agent-based restoration approach for reliability with load balancing on smart grids," Applied Energy, Elsevier, vol. 249(C), pages 46-57.
    2. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2017. "A cost-based integrated importance measure of system components for preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 98-104.
    3. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Feng, Qiang & Bi, Xiong & Zhao, Xiujie & Chen, Yiran & Sun, Bo, 2017. "Heuristic hybrid game approach for fleet condition-based maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 166-176.
    5. Zhu, Wenjin & Castanier, Bruno & Bettayeb, Belgacem, 2019. "A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    6. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimizing preventive replacement schedule in standby systems with time consuming task transfers," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Feng, Qiang & Zhao, Xiujie & Fan, Dongming & Cai, Baoping & Liu, Yiqi & Ren, Yi, 2019. "Resilience design method based on meta-structure: A case study of offshore wind farm," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 232-244.
    8. Zhang, Aibo & Zhang, Tieling & Barros, Anne & Liu, Yiliu, 2020. "Optimization of maintenances following proof tests for the final element of a safety-instrumented system," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    9. Si, Shubin & Levitin, Gregory & Dui, Hongyan & Sun, Shudong, 2013. "Component state-based integrated importance measure for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 75-83.
    10. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    11. Dui, Hongyan & Li, Shumin & Xing, Liudong & Liu, Hanlin, 2019. "System performance-based joint importance analysis guided maintenance for repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 162-175.
    12. Zhu, Wenjin & Fouladirad, Mitra & Bérenguer, Christophe, 2016. "A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 50-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Mena, R. & Viveros, P. & Zio, E. & Campos, S., 2021. "An optimization framework for opportunistic planning of preventive maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Yi Chen & Xiaobing Ma & Fanping Wei & Li Yang & Qingan Qiu, 2022. "Dynamic Scheduling of Intelligent Group Maintenance Planning under Usage Availability Constraint," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    4. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Hongyan Dui & Yulu Zhang & Yun-An Zhang, 2023. "Grouping Maintenance Policy for Improving Reliability of Wind Turbine Systems Considering Variable Cost," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    6. Hongyan Dui & Yuheng Yang & Yun-an Zhang & Yawen Zhu, 2022. "Recovery Analysis and Maintenance Priority of Metro Networks Based on Importance Measure," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    7. Shi, Haohao & Zhang, Ji & Zio, Enrico & Zhao, Xufeng, 2023. "Opportunistic maintenance policies for multi-machine production systems with quality and availability improvement," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    9. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Liwei & Gao, Yansan & Dui, Hongyan & Xing, Liudong, 2021. "Importance measure-based maintenance optimization strategy for pod slewing system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Fangyu Liu & Hongyan Dui & Ziyue Li, 2022. "Reliability analysis for electrical power systems based on importance measures," Journal of Risk and Reliability, , vol. 236(2), pages 317-328, April.
    3. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Nan Zhang & Sen Tian & Le Li & Zhongbin Wang & Jun Zhang, 2023. "Maintenance analysis of a partial observable K-out-of-N system with load sharing units," Journal of Risk and Reliability, , vol. 237(4), pages 703-713, August.
    6. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Resilience Measure of Network Systems by Node and Edge Indicators," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    9. Zhang, Chao & Chen, Rentong & Wang, Shaoping & Dui, Hongyan & Zhang, Yadong, 2022. "Resilience efficiency importance measure for the selection of a component maintenance strategy to improve system performance recovery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    12. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Fan, Dongming & Lin, Jing & Cai, Baoping & Liu, Bin, 2021. "Robustness of maintenance support service networks: attributes, evaluation and improvement," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    15. Li, Heping & Zhu, Wenjin & Dieulle, Laurence & Deloux, Estelle, 2022. "Condition-based maintenance strategies for stochastically dependent systems using Nested Lévy copulas," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    17. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    18. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    19. Lyu, Dong & Si, Shubin, 2020. "Dynamic importance measure for the K-out-of-n: G system under repeated random load," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.