IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2730-d878502.html
   My bibliography  Save this article

Dynamic Scheduling of Intelligent Group Maintenance Planning under Usage Availability Constraint

Author

Listed:
  • Yi Chen

    (School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China)

  • Xiaobing Ma

    (School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China)

  • Fanping Wei

    (School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China)

  • Li Yang

    (School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China)

  • Qingan Qiu

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Maintenance, particularly preventive maintenance, is a crucial measure to ensure the operational reliability, availability, and profitability of complex industrial systems such as nuclear asset, wind turbines, railway trains, etc. Powered by the continuous advancement of sensor technology, condition-based group maintenance has become available to enhance the execution efficiency and accuracy of maintenance plans. The majority of existing group maintenance plans are static, which require the prescheduling of maintenance sequences within fixed windows and, thus, cannot fully utilize real-time health information to ensure decision-making responsiveness. To address this problem, this paper proposes an intelligent group maintenance framework that is capable of dynamically and iteratively updating all component health information. A two-stage analytical maintenance model was formulated to capture the comprehensive impact of scheduled maintenance and opportunistic maintenance through failure analyses of both degradation and lifetime components. The penalty functions for advancing or postponing maintenance were calculated based on the real-time state and age information of each component in arbitrary groups, and the subsequent grouping of the time and sequence of components to be repaired were iteratively updated. A lifetime maintenance cost model was formulated and optimized under a usage availability constraint through the sequential dynamic programming of group sequences. Numerical experiments demonstrated the superior performance of the proposed approach in cost control and availability insurance compared with conventional static and periodic maintenance approaches.

Suggested Citation

  • Yi Chen & Xiaobing Ma & Fanping Wei & Li Yang & Qingan Qiu, 2022. "Dynamic Scheduling of Intelligent Group Maintenance Planning under Usage Availability Constraint," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2730-:d:878502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rim Louhichi & Mohamed Sallak & Jacques Pelletan, 2022. "A Study of the Impact of Predictive Maintenance Parameters on the Improvment of System Monitoring," Mathematics, MDPI, vol. 10(13), pages 1-24, June.
    2. Fan, Dongming & Zhang, Aibo & Feng, Qiang & Cai, Baoping & Liu, Yiliu & Ren, Yi, 2021. "Group maintenance optimization of subsea Xmas trees with stochastic dependency," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    4. Gary Linnéusson & Amos H. C. Ng & Tehseen Aslam, 2018. "Quantitative analysis of a conceptual system dynamics maintenance performance model using multi-objective optimisation," Journal of Simulation, Taylor & Francis Journals, vol. 12(2), pages 171-189, April.
    5. Yu, Wennian & Shao, Yimin & Xu, Jin & Mechefske, Chris, 2022. "An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    7. Wang, Jingjing & Yang, Li & Ma, Xiaobing & Peng, Rui, 2021. "Joint optimization of multi-window maintenance and spare part provisioning policies for production systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    9. Jia, Heping & Peng, Rui & Yang, Li & Wu, Tianyi & Liu, Dunnan & Li, Yanbin, 2022. "Reliability evaluation of demand-based warm standby systems with capacity storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.
    11. Wenliang Zhou & Sha Li & Jing Kang & Yu Huang, 2022. "Capacity-Oriented Train Scheduling of High-Speed Railway Considering the Operation and Maintenance of Rolling Stock," Mathematics, MDPI, vol. 10(10), pages 1-30, May.
    12. Zhang, Zihan & Yang, Li, 2020. "Postponed maintenance scheduling integrating state variation and environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiantai & Longyan, Tan & Ma, Xiaobing & Gao, Kaiye & Jia, Heping & Yang, Li, 2023. "Prognosis-driven reliability analysis and replacement policy optimization for two-phase continuous degradation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Hongyan Dui & Yulu Zhang & Yun-An Zhang, 2023. "Grouping Maintenance Policy for Improving Reliability of Wind Turbine Systems Considering Variable Cost," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    3. Fanping Wei & Jingjing Wang & Xiaobing Ma & Li Yang & Qingan Qiu, 2023. "An Optimal Opportunistic Maintenance Planning Integrating Discrete- and Continuous-State Information," Mathematics, MDPI, vol. 11(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiantai & Longyan, Tan & Ma, Xiaobing & Gao, Kaiye & Jia, Heping & Yang, Li, 2023. "Prognosis-driven reliability analysis and replacement policy optimization for two-phase continuous degradation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Wang, Jiantai & Zhou, Shihan & Peng, Rui & Qiu, Qingan & Yang, Li, 2023. "An inspection-based replacement planning in consideration of state-driven imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Wang, Jiantai & Ma, Xiaobing & Yang, Li & Qiu, Qingan & Shang, Lijun & Wang, Jingjing, 2024. "A hybrid inspection-replacement policy for multi-stage degradation considering imperfect inspection with variable probabilities," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Mosayebi Omshi, E. & Grall, A., 2021. "Replacement and imperfect repair of deteriorating system: Study of a CBM policy and impact of repair efficiency," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    7. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Shi, Yue & Xiang, Yisha & Xiao, Hui & Xing, Liudong, 2021. "Joint optimization of budget allocation and maintenance planning of multi-facility transportation infrastructure systems," European Journal of Operational Research, Elsevier, vol. 288(2), pages 382-393.
    9. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2022. "Optimal preventive switching of components in degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Zhao, Xian & Li, Rong & Cao, Shuai & Qiu, Qingan, 2023. "Joint modeling of loading and mission abort policies for systems operating in dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Zhou, Yu & Kou, Gang & Xiao, Hui & Peng, Yi & Alsaadi, Fawaz E., 2020. "Sequential imperfect preventive maintenance model with failure intensity reduction with an application to urban buses," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    13. Wang, Jingjing & Yang, Li & Ma, Xiaobing & Peng, Rui, 2021. "Joint optimization of multi-window maintenance and spare part provisioning policies for production systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Zhang, Fengxia & Shen, Jingyuan & Ma, Yizhong, 2020. "Optimal maintenance policy considering imperfect repairs and non-constant probabilities of inspection errors," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    16. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Mansour Shrahili & Mohamed Kayid, 2023. "Stochastic Orderings of the Idle Time of Inactive Standby Systems," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    18. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    19. Nan Zhang & Sen Tian & Le Li & Zhongbin Wang & Jun Zhang, 2023. "Maintenance analysis of a partial observable K-out-of-N system with load sharing units," Journal of Risk and Reliability, , vol. 237(4), pages 703-713, August.
    20. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2730-:d:878502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.