IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v186y2019icp162-175.html
   My bibliography  Save this article

System performance-based joint importance analysis guided maintenance for repairable systems

Author

Listed:
  • Dui, Hongyan
  • Li, Shumin
  • Xing, Liudong
  • Liu, Hanlin

Abstract

To enhance system performance, corrective maintenance for failed components and preventive maintenance (PM) for operating components can be performed simultaneously on repairable systems. Due to limited budget, it is typically not practical to perform PM for all the operating system components. Moreover, different selections of components for PM can lead to significant differences in system performance improvements. This paper proposes an extended joint integrated importance measure (JIIM) to effectively guide the selection of PM components, aiming to maximize gains of the system performance. A multi-valued decision diagram (MDD) based method is then developed to evaluate the proposed JIIM for general repairable systems. The computational procedure of MDD and some properties of JIIM are illustrated with a numerical example of a system containing three components. A realistic application to the performance analysis of an aircraft warning system verifies the proposed method.

Suggested Citation

  • Dui, Hongyan & Li, Shumin & Xing, Liudong & Liu, Hanlin, 2019. "System performance-based joint importance analysis guided maintenance for repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 162-175.
  • Handle: RePEc:eee:reensy:v:186:y:2019:i:c:p:162-175
    DOI: 10.1016/j.ress.2019.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018302746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramirez-Marquez, Jose Emmanuel & Coit, David W., 2007. "Multi-state component criticality analysis for reliability improvement in multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1608-1619.
    2. Zhu, Xiaoyan & Fu, Yuqiang & Yuan, Tao & Wu, Xinying, 2017. "Birnbaum importance based heuristics for multi-type component assignment problems," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 209-221.
    3. Zhai, Qingqing & Yang, Jun & Xie, Min & Zhao, Yu, 2014. "Generalized moment-independent importance measures based on Minkowski distance," European Journal of Operational Research, Elsevier, vol. 239(2), pages 449-455.
    4. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    5. Natvig, Bent & Eide, Kristina A. & Gåsemyr, Jørund & Huseby, Arne B. & Isaksen, Stefan L., 2009. "Simulation based analysis and an application to an offshore oil and gas production system of the Natvig measures of component importance in repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1629-1638.
    6. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    7. Xing, Liudong & Levitin, Gregory, 2018. "Connectivity modeling and optimization of linear consecutively connected systems with repairable connecting elements," European Journal of Operational Research, Elsevier, vol. 264(2), pages 732-741.
    8. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2018. "Importance measures for optimal structure in linear consecutive-k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 339-350.
    9. Borgonovo, Emanuele & Aliee, Hananeh & Glaß, Michael & Teich, Jürgen, 2016. "A new time-independent reliability importance measure," European Journal of Operational Research, Elsevier, vol. 254(2), pages 427-442.
    10. Qingqing Zhai & Rui Peng & Liudong Xing & Jun Yang, 2013. "Binary decision diagram-based reliability evaluation of k-out-of-(n + k) warm standby systems subject to fault-level coverage," Journal of Risk and Reliability, , vol. 227(5), pages 540-548, October.
    11. Li, Shumin & Si, Shubin & Dui, Hongyan & Cai, Zhiqiang & Sun, Shudong, 2014. "A novel decision diagrams extension method," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 107-115.
    12. Wu, Shaomin & Chen, Yi & Wu, Qingtai & Wang, Zhonglai, 2016. "Linking component importance to optimisation of preventive maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 26-32.
    13. Gao, Xueli & Cui, Lirong & Li, Jinlin, 2007. "Analysis for joint importance of components in a coherent system," European Journal of Operational Research, Elsevier, vol. 182(1), pages 282-299, October.
    14. Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2017. "A cost-based integrated importance measure of system components for preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 98-104.
    2. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Eryilmaz, Serkan & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2018. "Marginal and joint reliability importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 118-128.
    4. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Hu, Bin & Seiler, Peter, 2015. "Pivotal decomposition for reliability analysis of fault tolerant control systems on unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 130-141.
    6. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Resilience Measure of Network Systems by Node and Edge Indicators," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    9. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Dui, Hongyan & Wei, Xuan & Xing, Liudong, 2023. "A new multi-criteria importance measure and its applications to risk reduction and safety enhancement," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Liu, Mingli & Wang, Dan & Si, Shubin, 2023. "Mixed reliability importance-based solving algorithm design for the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Dui, Hongyan & Si, Shubin & Wu, Shaomin & Yam, Richard C.M., 2017. "An importance measure for multistate systems with external factors," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 49-57.
    13. Xianzhen Huang & Frank PA Coolen, 2018. "Reliability sensitivity analysis of coherent systems based on survival signature," Journal of Risk and Reliability, , vol. 232(6), pages 627-634, December.
    14. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2018. "Importance measures for optimal structure in linear consecutive-k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 339-350.
    16. Dui, Hongyan & Tian, Tianzi & Wu, Shaomin & Xie, Min, 2023. "A cost-informed component maintenance index and its applications," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Dui, Hongyan & Tian, Tianzi & Zhao, Jiangbin & Wu, Shaomin, 2022. "Comparing with the joint importance under consideration of consecutive-k-out-of-n system structure changes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Phuc Do & Christophe Bérenguer, 2022. "Residual life-based importance measures for predictive maintenance decision-making," Journal of Risk and Reliability, , vol. 236(1), pages 98-113, February.
    19. Cai, Zhiqiang & Si, Shubin & Sun, Shudong & Li, Caitao, 2016. "Optimization of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 248-258.
    20. Zaitseva, Elena & Levashenko, Vitaly & Kostolny, Jozef, 2015. "Importance analysis based on logical differential calculus and Binary Decision Diagram," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 135-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:186:y:2019:i:c:p:162-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.