IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v108y2016icp63-81.html
   My bibliography  Save this article

An analysis of integrated robust hybrid model for third-party reverse logistics partner selection under fuzzy environment

Author

Listed:
  • Prakash, Chandra
  • Barua, M.K.

Abstract

Owing to environmental and waste disposal issues, enforced legislation and corporate social concern; companies are focusing on reverse logistics (RL) practices, especially in the present scenario dominated by intense competition, demanding customer and fast changing technologies. These practices are widely adopted by industries through reverse logistics partners. However, the evaluation and selection of the reverse logistics partner is a matter of concern which needs a very grave decision, involving complexity due to presence of numerous associated factors. In addition, it is hypothesized that the decision makers might be inconsistent to some extent in their views and preferences that affect other dominant constituents. Consequently, incomplete and inadequate sort of information may occur among various selection criteria, which is termed ‘multi-criteria decision making’ (MCDM) problem. The goal of the present study is to discuss an integrated model based on fuzzy analytic hierarchy process (FAHP) for evaluation and prioritization of selection criteria and fuzzy technique for order performance by similarity to ideal solution (FTOPSIS) for the selection and development of reverse logistics partner. This study is an attempt to present a genuine concern of Indian electronics industry using an integrated approach to demonstrate the application of the proposed framework as well. In this study two stage sensitivity analyses are performed to get further insight of evaluation and selection of RL partner and verification of robustness of the model. This study aims to provide a significant contribution to electronics organizations in evaluation and selection of third party RL partner while achieving efficiency and effectiveness in RL practices.

Suggested Citation

  • Prakash, Chandra & Barua, M.K., 2016. "An analysis of integrated robust hybrid model for third-party reverse logistics partner selection under fuzzy environment," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 63-81.
  • Handle: RePEc:eee:recore:v:108:y:2016:i:c:p:63-81
    DOI: 10.1016/j.resconrec.2015.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915301580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talluri, Srinivas & Narasimhan, Ram, 2003. "Vendor evaluation with performance variability: A max-min approach," European Journal of Operational Research, Elsevier, vol. 146(3), pages 543-552, May.
    2. Krumwiede, Dennis W. & Sheu, Chwen, 2002. "A model for reverse logistics entry by third-party providers," Omega, Elsevier, vol. 30(5), pages 325-333, October.
    3. Ghodsypour, S. H. & O'Brien, C., 1998. "A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming," International Journal of Production Economics, Elsevier, vol. 56(1), pages 199-212, September.
    4. Amini, M. Mehdi & Retzlaff-Roberts, Donna & Bienstock, Carol C., 2005. "Designing a reverse logistics operation for short cycle time repair services," International Journal of Production Economics, Elsevier, vol. 96(3), pages 367-380, June.
    5. Garg, Chandra Prakash, 2016. "A robust hybrid decision model for evaluation and selection of the strategic alliance partner in the airline industry," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 55-66.
    6. Aguezzoul, Aicha, 2014. "Third-party logistics selection problem: A literature review on criteria and methods," Omega, Elsevier, vol. 49(C), pages 69-78.
    7. Kannan, Govindan & Pokharel, Shaligram & Sasi Kumar, P., 2009. "A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 28-36.
    8. Shad Dowlatshahi, 2000. "Developing a Theory of Reverse Logistics," Interfaces, INFORMS, vol. 30(3), pages 143-155, June.
    9. Gunasekaran, Angappa & McGaughey, Ronald E. & Ngai, Eric W.T. & Rai, Bharatendra K., 2009. "E-Procurement adoption in the Southcoast SMEs," International Journal of Production Economics, Elsevier, vol. 122(1), pages 161-175, November.
    10. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    11. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    12. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    13. Prahinski, Carol & Kocabasoglu, Canan, 2006. "Empirical research opportunities in reverse supply chains," Omega, Elsevier, vol. 34(6), pages 519-532, December.
    14. Büyüközkan, Gülçin & Feyzioglu, Orhan & Nebol, Erdal, 2008. "Selection of the strategic alliance partner in logistics value chain," International Journal of Production Economics, Elsevier, vol. 113(1), pages 148-158, May.
    15. Govindan, Kannan & Palaniappan, Murugesan & Zhu, Qinghua & Kannan, Devika, 2012. "Analysis of third party reverse logistics provider using interpretive structural modeling," International Journal of Production Economics, Elsevier, vol. 140(1), pages 204-211.
    16. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    17. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    18. Kumar, D. Thresh & Palaniappan, Murugesan & Kannan, Devika & Shankar, K. Madan, 2014. "Analyzing the CSR issues behind the supplier selection process using ISM approach," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 268-278.
    19. Gunasekaran, A. & Patel, C. & McGaughey, Ronald E., 2004. "A framework for supply chain performance measurement," International Journal of Production Economics, Elsevier, vol. 87(3), pages 333-347, February.
    20. Wagner, Stephan M. & Sutter, Reto, 2012. "A qualitative investigation of innovation between third-‐party logistics providers and customers," International Journal of Production Economics, Elsevier, vol. 140(2), pages 944-958.
    21. Wong, Christina W.Y. & Lai, Kee-hung & Ngai, E.W.T., 2009. "The role of supplier operational adaptation on the performance of IT-enabled transport logistics under environmental uncertainty," International Journal of Production Economics, Elsevier, vol. 122(1), pages 47-55, November.
    22. Mangla, Sachin Kumar & Kumar, Pradeep & Barua, Mukesh Kumar, 2015. "Risk analysis in green supply chain using fuzzy AHP approach: A case study," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 375-390.
    23. Sivakumar, R. & Kannan, Devika & Murugesan, P., 2015. "Green vendor evaluation and selection using AHP and Taguchi loss functions in production outsourcing in mining industry," Resources Policy, Elsevier, vol. 46(P1), pages 64-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra Prakash Garg & Vishal Kashav & Xuemuge Wang, 2023. "Evaluating sustainability factors of green ports in China under fuzzy environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7795-7821, August.
    2. Patricia Guarnieri & Lucio Camara e Silva & Bárbara de Oliveira Vieira, 2020. "How to Assess Reverse Logistics of e-Waste Considering a Multicriteria Perspective? A Model Proposition," Logistics, MDPI, vol. 4(4), pages 1-31, October.
    3. Harshitha Urs Ajjipura Shankar & Udaya Kumara Kodipalya Nanjappa & M. D. Alsulami & Ballajja C. Prasannakumara, 2022. "A Fuzzy AHP-Fuzzy TOPSIS Urged Baseline Aid for Execution Amendment of an Online Food Delivery Affability," Mathematics, MDPI, vol. 10(16), pages 1-24, August.
    4. Vishal Kashav & Chandra Prakash Garg & Rupesh Kumar, 2023. "Ranking the strategies to overcome the barriers of the maritime supply chain (MSC) of containerized freight under fuzzy environment," Annals of Operations Research, Springer, vol. 324(1), pages 1223-1268, May.
    5. Sheng-Qiang Gu & Yong Liu & Hao Yu, 2023. "Power battery recycling strategy with government rewards and punishments," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 501-526, March.
    6. Miguel Ortiz-Barrios & Juan Cabarcas-Reyes & Alessio Ishizaka & Maria Barbati & Natalia Jaramillo-Rueda & Giovani Jesús Carrascal-Zambrano, 2021. "A hybrid fuzzy multi-criteria decision making model for selecting a sustainable supplier of forklift filters: a case study from the mining industry," Annals of Operations Research, Springer, vol. 307(1), pages 443-481, December.
    7. Ozden Tozanli & Gazi Murat Duman & Elif Kongar & Surendra M. Gupta, 2017. "Environmentally Concerned Logistics Operations in Fuzzy Environment: A Literature Survey," Logistics, MDPI, vol. 1(1), pages 1-42, June.
    8. Esmaelnezhad, Danial & Taghizadeh-Yazdi, Mohammadreza & Amoozad Mahdiraji, Hannan & Vrontis, Demetris, 2023. "International strategic alliances for collaborative product Innovation: An agent-based scenario analysis in biopharmaceutical industry," Journal of Business Research, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    2. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2016. "Outsourcing decisions in reverse logistics: Sustainable balanced scorecard and graph theoretic approach," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 41-53.
    3. Kannan Govindan & Vernika Agarwal & Jyoti Dhingra Darbari & P. C. Jha, 2019. "An integrated decision making model for the selection of sustainable forward and reverse logistic providers," Annals of Operations Research, Springer, vol. 273(1), pages 607-650, February.
    4. Pokharel, Shaligram & Mutha, Akshay, 2009. "Perspectives in reverse logistics: A review," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 175-182.
    5. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    6. Krikke, Harold & Hofenk, Dianne & Wang, Yacan, 2013. "Revealing an invisible giant: A comprehensive survey into return practices within original (closed-loop) supply chains," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 239-250.
    7. Chandra Prakash Garg, 2020. "A robust hybrid decision model to evaluate critical factors of reverse logistics implementation using Grey-DEMATEL framework," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 837-873, September.
    8. Bouzon, Marina & Govindan, Kannan & Rodriguez, Carlos M.Taboada & Campos, Lucila M.S., 2016. "Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 182-197.
    9. Govindan, Kannan & Kadziński, Miłosz & Ehling, Ronja & Miebs, Grzegorz, 2019. "Selection of a sustainable third-party reverse logistics provider based on the robustness analysis of an outranking graph kernel conducted with ELECTRE I and SMAA," Omega, Elsevier, vol. 85(C), pages 1-15.
    10. Faustino Alarcón & Pascual Cortés-Pellicer & David Pérez-Perales & Raquel Sanchis, 2020. "Sustainability vs. Circular Economy from a Disposition Decision Perspective: A Proposal of a Methodology and an Applied Example in SMEs," Sustainability, MDPI, vol. 12(23), pages 1-26, December.
    11. Roya Ghamari & Mohammad Mahdavi-Mazdeh & Seyed Farid Ghannadpour, 2022. "Resilient and sustainable supplier selection via a new framework: a case study from the steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10403-10441, August.
    12. Kumar, V.N.S.A. & Kumar, V. & Brady, M. & Garza-Reyes, Jose Arturo & Simpson, M., 2017. "Resolving forward-reverse logistics multi-period model using evolutionary algorithms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 458-469.
    13. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Reprint of “Green decision-making model in reverse logistics using FUZZY-VIKOR method”," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 334-347.
    14. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    15. Berrone, Pascual Alberto & Husillos, F. Javier, 2005. "The explanatory power of trust and commitment and stakeholders' salience : their influence on the reverse logistics programs performance," DEE - Working Papers. Business Economics. WB wb050303, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    16. Raut, Rakesh D. & Gardas, Bhaskar B. & Narwane, Vaibhav S. & Narkhede, Balkrishna E., 2019. "Improvement in the food losses in fruits and vegetable supply chain - a perspective of cold third-party logistics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    17. Srivastava, Samir K., 2008. "Network design for reverse logistics," Omega, Elsevier, vol. 36(4), pages 535-548, August.
    18. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Green decision-making model in reverse logistics using FUZZY-VIKOR method," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 125-138.
    19. Syed Mithun Ali & Asraf Arafin & Md. Abdul Moktadir & Towfique Rahman & Nuzhat Zahan, 2018. "Barriers to Reverse Logistics in the Computer Supply Chain Using Interpretive Structural Model," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 19(1), pages 53-68, March.
    20. Ozden Tozanli & Gazi Murat Duman & Elif Kongar & Surendra M. Gupta, 2017. "Environmentally Concerned Logistics Operations in Fuzzy Environment: A Literature Survey," Logistics, MDPI, vol. 1(1), pages 1-42, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:108:y:2016:i:c:p:63-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.