IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v171y2016ip1p8-21.html
   My bibliography  Save this article

Mitigating supply chain disruptions through the assessment of trade-offs among risks, costs and investments in capabilities

Author

Listed:
  • Vahid Nooraie, S.
  • Parast, Mahour Mellat

Abstract

One of the central questions in supply chain design is how to properly invest in supply chain capabilities in order to be more responsive to supply chain disruptions. This new perspective in supply chain design requires an understanding of the relationships among costs, supply chain risk drivers, and investments in supply chain capabilities. In this paper, we develop a multi-objective stochastic model for supply chain design under uncertainty and time-dependency. Sources of risk are modeled as a set of scenarios, and the risk of the system is determined. The objective is to examine the trade-offs among investments in improving supply chain capabilities and reducing supply chain risks, and to minimize cost of supply chain disruptions. Due to the NP-hard nature of the problem, a heuristic algorithm based on a relaxation method is designed to determine an optimal or near-optimal solution. To examine the efficiency of the heuristic algorithm, a numerical example is provided. Our findings suggest that increasing supply chain capabilities can be viewed as a mitigation strategy that enables a firm to reduce the total expected cost of a supply chain subject to disruptions.

Suggested Citation

  • Vahid Nooraie, S. & Parast, Mahour Mellat, 2016. "Mitigating supply chain disruptions through the assessment of trade-offs among risks, costs and investments in capabilities," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 8-21.
  • Handle: RePEc:eee:proeco:v:171:y:2016:i:p1:p:8-21
    DOI: 10.1016/j.ijpe.2015.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315003990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moncayo-Martínez, Luis A. & Zhang, David Z., 2011. "Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design," International Journal of Production Economics, Elsevier, vol. 131(1), pages 407-420, May.
    2. M. Narenji & S.M.T. Fatemi Ghomi & S.V.R. Nooraie, 2011. "Grouping in decomposition method for multi-item capacitated lot-sizing problem with immediate lost sales and joint and item-dependent setup cost," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(3), pages 489-498.
    3. Nooraie, S. Vahid & Mellat Parast, Mahour, 2015. "A multi-objective approach to supply chain risk management: Integrating visibility with supply and demand risk," International Journal of Production Economics, Elsevier, vol. 161(C), pages 192-200.
    4. Doerner, K.F. & Gutjahr, W.J. & Hartl, R.F. & Strauss, C. & Stummer, C., 2006. "Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection," European Journal of Operational Research, Elsevier, vol. 171(3), pages 830-841, June.
    5. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    6. Goh, Mark & Lim, Joseph Y.S. & Meng, Fanwen, 2007. "A stochastic model for risk management in global supply chain networks," European Journal of Operational Research, Elsevier, vol. 182(1), pages 164-173, October.
    7. Doerner, K.F. & Gutjahr, W.J. & Hartl, R.F. & Strauss, C. & Stummer, C., 2008. "Nature-inspired metaheuristics for multiobjective activity crashing," Omega, Elsevier, vol. 36(6), pages 1019-1037, December.
    8. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    9. Huang, Edward & Goetschalckx, Marc, 2014. "Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 508-518.
    10. Aiello, Giuseppe & Enea, Mario & Muriana, Cinzia, 2015. "The expected value of the traceability information," European Journal of Operational Research, Elsevier, vol. 244(1), pages 176-186.
    11. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    12. Timpe, Christian H. & Kallrath, Josef, 2000. "Optimal planning in large multi-site production networks," European Journal of Operational Research, Elsevier, vol. 126(2), pages 422-435, October.
    13. Roh, James & Hong, Paul & Min, Hokey, 2014. "Implementation of a responsive supply chain strategy in global complexity: The case of manufacturing firms," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 198-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R.S. Rogulin, 2021. "The Role of ICT and Entrepreneurship in forming Sustainable Supply Chains: Before and After the Covid-19 Pandemic," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(3), pages 461-488.
    2. PrasannaVenkatesan, S. & Goh, M., 2016. "Multi-objective supplier selection and order allocation under disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 124-142.
    3. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2017. "Responsive contingency planning of capacitated supply networks under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 13-37.
    4. Ransikarbum, Kasin & Mason, Scott J., 2016. "Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration," International Journal of Production Economics, Elsevier, vol. 182(C), pages 324-341.
    5. Polo, Andrés & Peña, Numar & Muñoz, Dairo & Cañón, Adrián & Escobar, John Willmer, 2019. "Robust design of a closed-loop supply chain under uncertainty conditions integrating financial criteria," Omega, Elsevier, vol. 88(C), pages 110-132.
    6. Setene, Letlama & Jordaan, Daniel du P.S., 2021. "The trade-off between chain performance and fragility considering coordination strategies of agri-food chains: a South African egg chain's case study," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(3), March.
    7. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    8. Nitya Singh & Paul Hong, 2023. "CSR, Risk Management Practices, and Performance Outcomes: An Empirical Investigation of Firms in Different Industries," JRFM, MDPI, vol. 16(2), pages 1-20, January.
    9. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    10. Tse, Ying Kei & Zhang, Minhao & Zeng, Wenjuan & Ma, Jie, 2021. "Perception of supply chain quality risk: Understanding the moderation role of supply market thinness," Journal of Business Research, Elsevier, vol. 122(C), pages 822-834.
    11. Zhi Li & Guanghao Jin & Shen Duan, 2018. "Evolutionary Game Dynamics for Financial Risk Decision-Making in Global Supply Chain," Complexity, Hindawi, vol. 2018, pages 1-10, October.
    12. Amulya Gurtu & Jestin Johny, 2021. "Supply Chain Risk Management: Literature Review," Risks, MDPI, vol. 9(1), pages 1-16, January.
    13. Sardesai, Saskia & Klingebiel, Katja, 2023. "Maintaining viability by rapid supply chain adaptation using a process capability index," Omega, Elsevier, vol. 115(C).
    14. Kauppi, Katri & Longoni, Annachiara & Caniato, Federico & Kuula, Markku, 2016. "Managing country disruption risks and improving operational performance: risk management along integrated supply chains," International Journal of Production Economics, Elsevier, vol. 182(C), pages 484-495.
    15. Rogulin, Rodion S., 2021. "Assessment of the Implementation of New Digital Technologies in Connection with the Level of Efficiency of Supply Chains in the Context of COVID-19," Economic Consultant, Roman I. Ostapenko, vol. 35(3), pages 5-17.
    16. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    2. Govindan, Kannan & Fattahi, Mohammad, 2017. "Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 680-699.
    3. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    4. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    5. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.
    6. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.
    7. Kanokporn Kungwalsong & Abraham Mendoza & Vasanth Kamath & Subramanian Pazhani & Jose Antonio Marmolejo-Saucedo, 2022. "An application of interactive fuzzy optimization model for redesigning supply chain for resilience," Annals of Operations Research, Springer, vol. 315(2), pages 1803-1839, August.
    8. Moncayo-Martínez, Luis A. & Zhang, David Z., 2013. "Optimising safety stock placement and lead time in an assembly supply chain using bi-objective MAX–MIN ant system," International Journal of Production Economics, Elsevier, vol. 145(1), pages 18-28.
    9. Mohammad Fattahi, 2020. "A data-driven approach for supply chain network design under uncertainty with consideration of social concerns," Annals of Operations Research, Springer, vol. 288(1), pages 265-284, May.
    10. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    11. Rastogi, Aditya P. & Fowler, John W. & Matthew Carlyle, W. & Araz, Ozgur M. & Maltz, Arnold & Büke, Burak, 2011. "Supply network capacity planning for semiconductor manufacturing with uncertain demand and correlation in demand considerations," International Journal of Production Economics, Elsevier, vol. 134(2), pages 322-332, December.
    12. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    13. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    14. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    15. Seyyed Mohammad Seyyed Alizadeh Ganji & Mohammad Hayati, 2016. "Identifying and Assessing the Risks in the Supply Chain," Modern Applied Science, Canadian Center of Science and Education, vol. 10(6), pages 1-74, June.
    16. Rezapour, Shabnam & Allen, Janet K. & Mistree, Farrokh, 2015. "Uncertainty propagation in a supply chain or supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 185-206.
    17. Lijing Zhu, 2017. "Economic Analysis of a Traceability System for a Two-Level Perishable Food Supply Chain," Sustainability, MDPI, vol. 9(5), pages 1-16, April.
    18. Roba W. Salem & Mohamed Haouari, 2017. "A simulation-optimisation approach for supply chain network design under supply and demand uncertainties," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1845-1861, April.
    19. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    20. Wafaa A. H. Ahmed & Bart L. MacCarthy, 2021. "Blockchain-Enabled Supply Chain Traceability in the Textile and Apparel Supply Chain: A Case Study of the Fiber Producer, Lenzing," Sustainability, MDPI, vol. 13(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:171:y:2016:i:p1:p:8-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.