IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v145y2013i1p371-386.html
   My bibliography  Save this article

A bi-objective scheduling problem on batch machines via a Pareto-based ant colony system

Author

Listed:
  • Xu, Rui
  • Chen, Huaping
  • Li, Xueping

Abstract

This research aims to minimize the bi-criteria of makespan and maximum tardiness on a set of identical batch-processing machines arranged in parallel. Each machine can process multiple jobs simultaneously as long as the machine capacity is not exceeded. Each job is defined by its processing time, ready time, due date, and size. The processing time and ready time of a batch are represented by the largest processing time and release time among all jobs in the batch, respectively. For this problem, a scheduling algorithm based on the framework of a multi-objective ant colony optimization (MOACO) approach called a Pareto-based ant colony system (PACS) was developed. Based on the constructive characteristics of PACS, a new mechanism of solution construction was introduced so that the proposed algorithm had the ability to explore the entire solution space. Moreover, corresponding to the new construction mechanism, a candidate list strategy and a form of dynamic heuristic information were developed to reduce the search space and direct the search toward the promising regions, respectively. Through extensive computational experiments with various problem instances, the effectiveness of the proposed algorithm was evaluated by measuring the computational efficiency and solution quality. The experiment results demonstrated that PACS had a superior performance compared to other benchmark algorithms, especially for large job instances.

Suggested Citation

  • Xu, Rui & Chen, Huaping & Li, Xueping, 2013. "A bi-objective scheduling problem on batch machines via a Pareto-based ant colony system," International Journal of Production Economics, Elsevier, vol. 145(1), pages 371-386.
  • Handle: RePEc:eee:proeco:v:145:y:2013:i:1:p:371-386
    DOI: 10.1016/j.ijpe.2013.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313002284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    2. Sung, C. S. & Choung, Y. I., 2000. "Minimizing makespan on a single burn-in oven in semiconductor manufacturing," European Journal of Operational Research, Elsevier, vol. 120(3), pages 559-574, February.
    3. Chung-Yee Lee & Reha Uzsoy & Louis A. Martin-Vega, 1992. "Efficient Algorithms for Scheduling Semiconductor Burn-In Operations," Operations Research, INFORMS, vol. 40(4), pages 764-775, August.
    4. Garcia-Martinez, C. & Cordon, O. & Herrera, F., 2007. "A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP," European Journal of Operational Research, Elsevier, vol. 180(1), pages 116-148, July.
    5. Gravel, Marc & Price, Wilson L. & Gagne, Caroline, 2002. "Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic," European Journal of Operational Research, Elsevier, vol. 143(1), pages 218-229, November.
    6. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    7. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    8. Jolai, Fariborz, 2005. "Minimizing number of tardy jobs on a batch processing machine with incompatible job families," European Journal of Operational Research, Elsevier, vol. 162(1), pages 184-190, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhao-hong & Leung, Joseph Y.-T., 2015. "A meta-heuristic to minimize makespan for parallel batch machines with arbitrary job sizes," European Journal of Operational Research, Elsevier, vol. 240(3), pages 649-665.
    2. XiaoLin Li & YuPeng Li & Yu Wang, 2017. "Minimising makespan on a batch processing machine using heuristics improved by an enumeration scheme," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 176-186, January.
    3. Jia, Zhao-hong & Li, Kai & Leung, Joseph Y.-T., 2015. "Effective heuristic for makespan minimization in parallel batch machines with non-identical capacities," International Journal of Production Economics, Elsevier, vol. 169(C), pages 1-10.
    4. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    5. Onur Ozturk, 2020. "A bi-criteria optimization model for medical device sterilization," Annals of Operations Research, Springer, vol. 293(2), pages 809-831, October.
    6. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    7. Gilseung Ahn & Sun Hur, 2020. "Clustering and Dispatching Rule Selection Framework for Batch Scheduling," Mathematics, MDPI, vol. 8(1), pages 1-14, January.
    8. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. Jia, Zhao-hong & Leung, Joseph Y.-T., 2015. "A meta-heuristic to minimize makespan for parallel batch machines with arbitrary job sizes," European Journal of Operational Research, Elsevier, vol. 240(3), pages 649-665.
    3. Wang, Jun-Qiang & Fan, Guo-Qiang & Zhang, Yingqian & Zhang, Cheng-Wu & Leung, Joseph Y.-T., 2017. "Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 258(2), pages 478-490.
    4. Jia, Zhao-hong & Li, Kai & Leung, Joseph Y.-T., 2015. "Effective heuristic for makespan minimization in parallel batch machines with non-identical capacities," International Journal of Production Economics, Elsevier, vol. 169(C), pages 1-10.
    5. Zhou, Shengchao & Liu, Ming & Chen, Huaping & Li, Xueping, 2016. "An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes," International Journal of Production Economics, Elsevier, vol. 179(C), pages 1-11.
    6. Zhou, Shengchao & Xie, Jianhui & Du, Ni & Pang, Yan, 2018. "A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines with different capacities and arbitrary job sizes," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 254-268.
    7. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    8. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    9. Chakhlevitch, Konstantin & Glass, Celia A. & Kellerer, Hans, 2011. "Batch machine production with perishability time windows and limited batch size," European Journal of Operational Research, Elsevier, vol. 210(1), pages 39-47, April.
    10. Bo Chen & Xiaotie Deng & Wenan Zang, 2004. "On-Line Scheduling a Batch Processing System to Minimize Total Weighted Job Completion Time," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 85-95, March.
    11. Wang, Jun-Qiang & Leung, Joseph Y.-T., 2014. "Scheduling jobs with equal-processing-time on parallel machines with non-identical capacities to minimize makespan," International Journal of Production Economics, Elsevier, vol. 156(C), pages 325-331.
    12. A H Kashan & B Karimi, 2008. "Scheduling a single batch-processing machine with arbitrary job sizes and incompatible job families: An ant colony framework," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1269-1280, September.
    13. Ridouard, Frédéric & Richard, Pascal & Martineau, Patrick, 2008. "On-line scheduling on a batch processing machine with unbounded batch size to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1327-1342, September.
    14. Li, Xueping & Zhang, Kaike, 2018. "Single batch processing machine scheduling with two-dimensional bin packing constraints," International Journal of Production Economics, Elsevier, vol. 196(C), pages 113-121.
    15. Koh, Shie-Gheun & Koo, Pyung-Hoi & Kim, Dong-Chun & Hur, Won-Suk, 2005. "Scheduling a single batch processing machine with arbitrary job sizes and incompatible job families," International Journal of Production Economics, Elsevier, vol. 98(1), pages 81-96, October.
    16. Matin, Hossein N.Z. & Salmasi, Nasser & Shahvari, Omid, 2017. "Makespan minimization in flowshop batch processing problem with different batch compositions on machines," International Journal of Production Economics, Elsevier, vol. 193(C), pages 832-844.
    17. Ruyan Fu & Ji Tian & Shisheng Li & Jinjiang Yuan, 2017. "An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1187-1197, November.
    18. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    19. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    20. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:145:y:2013:i:1:p:371-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.