IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v563y2021ics0378437120307743.html
   My bibliography  Save this article

Count regression models for COVID-19

Author

Listed:
  • Chan, Stephen
  • Chu, Jeffrey
  • Zhang, Yuanyuan
  • Nadarajah, Saralees

Abstract

At the end of 2019, the current novel coronavirus emerged as a severe acute respiratory disease that has now become a worldwide pandemic. Future generations will look back on this difficult period and see how our society as a whole united and rose to this challenge. Many reports have suggested that this new virus is becoming comparable to the Spanish flu pandemic of 1918. We provide a statistical study on the modelling and analysis of the daily incidence of COVID-19 in eighteen countries around the world. In particular, we investigate whether it is possible to fit count regression models to the number of daily new cases of COVID-19 in various countries and make short term predictions of these numbers. The results suggest that the biggest advantage of these methods is that they are simplistic and straightforward allowing us to obtain preliminary results and an overall picture of the trends in the daily confirmed cases of COVID-19 around the world. The best fitting count regression model for modelling the number of new daily COVID-19 cases of all countries analysed was shown to be a negative binomial distribution with log link function. Whilst the results cannot solely be used to determine and influence policy decisions, they provide an alternative to more specialised epidemiological models and can help to support or contradict results obtained from other analysis.

Suggested Citation

  • Chan, Stephen & Chu, Jeffrey & Zhang, Yuanyuan & Nadarajah, Saralees, 2021. "Count regression models for COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
  • Handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307743
    DOI: 10.1016/j.physa.2020.125460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120307743
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    3. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    4. Fokianos, Konstantinos & Tjøstheim, Dag, 2011. "Log-linear Poisson autoregression," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 563-578, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taro Kanatani & Kuninori Nakagawa, 2023. "Analysis of reporting lag in daily data of COVID-19 in Japan," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-20, December.
    2. Panarello, Demetrio & Tassinari, Giorgio, 2022. "One year of COVID-19 in Italy: are containment policies enough to shape the pandemic pattern?," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    3. Gning, Lucien & Ndour, Cheikh & Tchuenche, J.M., 2022. "Modeling COVID-19 daily cases in Senegal using a generalized Waring regression model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Pascoal, R. & Rocha, H., 2022. "Population density impact on COVID-19 mortality rate: A multifractal analysis using French data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    5. Ilya V. Naumov & Sergey S. Krasnykh & Yulia S. Otmakhova, 2022. "Scenario forecasting of the socio-economic consequences of the COVID-19 pandemic in Russian regions," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 8(1), pages 5-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    2. Aknouche, Abdelhakim & Bentarzi, Wissam & Demouche, Nacer, 2017. "On periodic ergodicity of a general periodic mixed Poisson autoregression," MPRA Paper 79650, University Library of Munich, Germany.
    3. Mamadou Lamine Diop & William Kengne, 2017. "Testing Parameter Change in General Integer-Valued Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 880-894, November.
    4. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
    5. Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
    6. Aknouche, Abdelhakim & Bentarzi, Wissam & Demouche, Nacer, 2018. "On periodic ergodicity of a general periodic mixed Poisson autoregression," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 15-21.
    7. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    8. Jon Michel, 2020. "The Limiting Distribution of a Non‐Stationary Integer Valued GARCH(1,1) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 351-356, March.
    9. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    10. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    11. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    12. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    13. Douc, R. & Doukhan, P. & Moulines, E., 2013. "Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2620-2647.
    14. Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
    15. Aknouche, Abdelhakim & Francq, Christian, 2021. "Count And Duration Time Series With Equal Conditional Stochastic And Mean Orders," Econometric Theory, Cambridge University Press, vol. 37(2), pages 248-280, April.
    16. Giovanni Angelini & Giuseppe Cavaliere & Enzo D'Innocenzo & Luca De Angelis, 2022. "Time-Varying Poisson Autoregression," Papers 2207.11003, arXiv.org.
    17. Byungsoo Kim & Sangyeol Lee, 2020. "Robust estimation for general integer-valued time series models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1371-1396, December.
    18. Aknouche, Abdelhakim & Scotto, Manuel, 2022. "A multiplicative thinning-based integer-valued GARCH model," MPRA Paper 112475, University Library of Munich, Germany.
    19. Fukang Zhu & Lei Shi & Shuangzhe Liu, 2015. "Influence diagnostics in log-linear integer-valued GARCH models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 311-335, July.
    20. Mengya Liu & Qi Li & Fukang Zhu, 2020. "Self-excited hysteretic negative binomial autoregression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 385-415, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.