IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v541y2020ics0378437119313093.html
   My bibliography  Save this article

An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms

Author

Listed:
  • Jiang, Minqi
  • Liu, Jiapeng
  • Zhang, Lu
  • Liu, Chunyu

Abstract

Stock price index is an essential component of financial systems and indicates the economic performance in the national level. Even if a small improvement in its forecasting performance will be highly profitable and meaningful. This manuscript input technical features together with macroeconomic indicators into an improved Stacking framework for predicting the direction of the stock price index in respect of the price prevailing some time earlier, if necessary, a month. Random forest (RF), extremely randomized trees (ERT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), which pertain to the tree-based algorithms, and recurrent neural networks (RNN), bidirectional RNN, RNN with long short-term memory (LSTM) and gated recurrent unit (GRU) layer, which pertain to the deep learning algorithms, are stacked as base classifiers in the first layer. Cross-validation method is then implemented to iteratively generate the input for the second level classifier in order to prevent overfitting. In the second layer, logistic regression, as well as its regularized version, are employed as meta-classifiers to identify the unique learning pattern of the base classifiers. Empirical results over three major U.S. stock indices indicate that our improved Stacking method outperforms state-of-the-art ensemble learning algorithms and deep learning models, achieving a higher level of accuracy, F-score and AUC value. Besides, another contribution in our research paper is the design of a Lasso (least absolute shrinkage and selection operator) based meta-classifier that is capable of automatically weighting/selecting the optimal base learners for the forecasting task. Our findings provide an integrated Stacking framework in the financial area.

Suggested Citation

  • Jiang, Minqi & Liu, Jiapeng & Zhang, Lu & Liu, Chunyu, 2020. "An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
  • Handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119313093
    DOI: 10.1016/j.physa.2019.122272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119313093
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
    2. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    3. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei & Zhang, Haoyu & Jia, Lifen, 2022. "A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    2. Ekaterina Zolotareva, 2021. "Aiding Long-Term Investment Decisions with XGBoost Machine Learning Model," Papers 2104.09341, arXiv.org.
    3. Ekaterina Zolotareva, 2021. "Applying Convolutional Neural Networks for Stock Market Trends Identification," Papers 2104.13948, arXiv.org.
    4. Jianlong Zhu & Dan Xian & Fengxiao & Yichen Nie, 2022. "Embedding-based neural network for investment return prediction," Papers 2210.00876, arXiv.org.
    5. Zhenhua Li & Xingxin Chen & Lin Wu & Abu-Siada Ahmed & Tao Wang & Yujie Zhang & Hongbin Li & Zhenxing Li & Yanchun Xu & Yue Tong, 2021. "Error Analysis of Air-Core Coil Current Transformer Based on Stacking Model Fusion," Energies, MDPI, vol. 14(7), pages 1-14, March.
    6. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    7. Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
    8. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    9. Yan Guo & Dezhao Tang & Wei Tang & Senqi Yang & Qichao Tang & Yang Feng & Fang Zhang, 2022. "Agricultural Price Prediction Based on Combined Forecasting Model under Spatial-Temporal Influencing Factors," Sustainability, MDPI, vol. 14(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    2. Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
    3. Carmina Fjellstrom, 2022. "Long Short-Term Memory Neural Network for Financial Time Series," Papers 2201.08218, arXiv.org.
    4. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
    5. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    6. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    7. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model," Papers 2203.01326, arXiv.org.
    8. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    9. Wu, Shue-Jen & Lee, Wei-Ming, 2015. "Predicting severe simultaneous bear stock markets using macroeconomic variables as leading indicators," Finance Research Letters, Elsevier, vol. 13(C), pages 196-204.
    10. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    11. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    12. Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
    13. Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    14. Wei-Chang Yeh & Yu-Hsin Hsieh & Chia-Ling Huang, 2022. "Newly Developed Flexible Grid Trading Model Combined ANN and SSO algorithm," Papers 2211.12839, arXiv.org.
    15. David G. McMillan, 2003. "Non‐linear Predictability of UK Stock Market Returns," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 557-573, December.
    16. Tomoshiro Ochiai & Jose C. Nacher, 2020. "Unveiling the directional network behind the financial statements data using volatility constraint correlation," Papers 2008.07836, arXiv.org, revised Jun 2023.
    17. Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
    18. Matthew F Dixon, 2017. "A High Frequency Trade Execution Model for Supervised Learning," Papers 1710.03870, arXiv.org, revised Dec 2017.
    19. Jaydip Sen & Tamal Datta Chaudhuri, 2017. "A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector," Papers 1705.01144, arXiv.org.
    20. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.

    More about this item

    Keywords

    Stock index prediction; Tree-based ensemble models; Deep learning; Stacking algorithm; Information fusion;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119313093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.