IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v77y2025ics1544612325003484.html
   My bibliography  Save this article

Prediction of market value of firms with corporate sustainability performance data using machine learning models

Author

Listed:
  • Doğan, Murat
  • Sayılır, Özlem
  • Komath, Muhammed Aslam Chelery
  • Çimen, Emre

Abstract

This study attempts to build models for prediction of market value of firms with Corporate Sustainability Performance data using machine learning models. We analyze a comprehensive global dataset of 5,450 firms operating in 10 sectors. Machine learning models of Random Forest, XGBoost, SVM, and Nearest Neighbor models were constructed with E,S,G,C scores (Environmental, Social, Governance, and ESG Controversies) and financial ratios obtained from the Refinitiv (LSEG) Database. The most suitable model (Random Forest Model) built for Market Capitalization prediction shows that Environmental (E) and ESG Controversies (C) scores stand out as important predictors of market value. The findings of the study emphasize the importance of integrating ESGC factors into market value prediction models. Moreover, our findings suggest that the importance of corporate sustainability performance factors (E, S, G, C) is more pronounced in Europe and America compared to other regions. This study may provide insights for companies, investors, and analysts to achieve a more sophisticated assessment of market value.

Suggested Citation

  • Doğan, Murat & Sayılır, Özlem & Komath, Muhammed Aslam Chelery & Çimen, Emre, 2025. "Prediction of market value of firms with corporate sustainability performance data using machine learning models," Finance Research Letters, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:finlet:v:77:y:2025:i:c:s1544612325003484
    DOI: 10.1016/j.frl.2025.107085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325003484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.107085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Market value; ESG performance; ESG controversies performance; Machine learning models; Market capitalization;
    All these keywords.

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • M14 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Corporate Culture; Diversity; Social Responsibility
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:77:y:2025:i:c:s1544612325003484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.