IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v517y2019icp210-221.html
   My bibliography  Save this article

A model-free, non-parametric method for density determination, with application to asset returns

Author

Listed:
  • Gzyl, Henryk
  • ter Horst, Enrique
  • Molina, Germán

Abstract

The distribution of the returns of an asset is still an open problem despite the variety of models and methods devised to deal with it. In this note we propose a model-free, nonparametric method for the estimation of asset returns, which is applicable also to a wider set of similar problems. The Laplace transform of a shifted rate of return or other percent change of a positive random variables can be transformed into a fractional moment problem which can then be solved by the method of maximum entropy. This is a very robust method and requires only a few values of the Laplace transform to provide good reconstructions. This method can be applied in multiple fields where model-free density estimation of functionals like percent changes of random variables is of interest.

Suggested Citation

  • Gzyl, Henryk & ter Horst, Enrique & Molina, Germán, 2019. "A model-free, non-parametric method for density determination, with application to asset returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 210-221.
  • Handle: RePEc:eee:phsmap:v:517:y:2019:i:c:p:210-221
    DOI: 10.1016/j.physa.2018.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118314195
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-389, July.
    2. Khrennikova, Polina, 2016. "Application of quantum master equation for long-term prognosis of asset-prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 253-263.
    3. Bartiromo, Rosario, 2013. "Maximum entropy distribution of stock price fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1638-1647.
    4. Rosario Bartiromo, 2011. "Maximum entropy distribution of stock price fluctuations," Papers 1106.4957, arXiv.org, revised Oct 2013.
    5. Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.
    6. Y. Malevergne & V. Pisarenko & D. Sornette, 2005. "Empirical distributions of stock returns: between the stretched exponential and the power law?," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 379-401.
    7. Sornette, Didier, 2001. "Fokker–Planck equation of distributions of financial returns and power laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 290(1), pages 211-217.
    8. D. Sornette & J. V. Andersen & P. Simonetti, 2000. "Portfolio Theory For "Fat Tails"," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 523-535.
    9. Gzyl, Henryk & ter Horst, Enrique & Molina, German, 2015. "A spectral measure estimation problem in rheology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 129-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Secrest, J.A. & Conroy, J.M. & Miller, H.G., 2020. "A unified view of transport equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Y. Malevergne & V. Pisarenko & D. Sornette, 2006. "The modified weibull distribution for asset returns: reply," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 451-451.
    3. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.
    4. Claudiu Vinte & Marcel Ausloos & Titus Felix Furtuna, 2022. "A Volatility Estimator of Stock Market Indices Based on the Intrinsic Entropy Model," Papers 2205.01370, arXiv.org.
    5. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Lee, Ming-Chih & Chiu, Chien-Liang & Lee, Yen-Hsien, 2007. "Is twin behavior of Nikkei 225 index futures the same?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 199-210.
    7. Cho-Min Lin & Yen-Hsien Lee & Chien-Liang Chiu, 2010. "Friends or enemies? Foreign investors in Taiwan," Applied Economics Letters, Taylor & Francis Journals, vol. 17(10), pages 977-982.
    8. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    9. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    10. Hernández-Ramírez, E. & del Castillo-Mussot, M. & Hernández-Casildo, J., 2021. "World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    11. Gronwald, Marc, 2019. "Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 86-92.
    12. Basieva, Irina & Khrennikova, Polina & Pothos, Emmanuel M. & Asano, Masanari & Khrennikov, Andrei, 2018. "Quantum-like model of subjective expected utility," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 150-162.
    13. Luca Vincenzo Ballestra & Enzo D’Innocenzo & Andrea Guizzardi, 2024. "Score-Driven Modeling with Jumps: An Application to S&P500 Returns and Options," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 375-406.
    14. Wan-Hsiu Cheng, 2008. "Overestimation in the Traditional GARCH Model During Jump Periods," Economics Bulletin, AccessEcon, vol. 3(68), pages 1-20.
    15. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Azoury, Nehme & Uddin, Gazi Salah, 2024. "Does oil price volatility matter for the US transportation industry?," Energy, Elsevier, vol. 290(C).
    16. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    17. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    18. Wu, Pei-Shan & Huang, Chien-Ming & Chiu, Chien-Liang, 2011. "Effects of structural changes on the risk characteristics of REIT returns," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 645-653, October.
    19. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    20. Rangel, José Gonzalo, 2011. "Macroeconomic news, announcements, and stock market jump intensity dynamics," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1263-1276, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:517:y:2019:i:c:p:210-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.