IDEAS home Printed from
   My bibliography  Save this article

Information measure for financial time series: Quantifying short-term market heterogeneity


  • Ponta, Linda
  • Carbone, Anna


A well-interpretable measure of information has been recently proposed based on a partition obtained by intersecting a random sequence with its moving average. The partition yields disjoint sets of the sequence, which are then ranked according to their size to form a probability distribution function and finally fed in the expression of the Shannon entropy. In this work, such entropy measure is implemented on the time series of prices and volatilities of six financial markets. The analysis has been performed, on tick-by-tick data sampled every minute for six years of data from 1999 to 2004, for a broad range of moving average windows and volatility horizons. The study shows that the entropy of the volatility series depends on the individual market, while the entropy of the price series is practically invariant for the six markets. Finally, a cumulative information measure – the Market Heterogeneity Index – derived from the integral of the entropy measure, is introduced for obtaining the weights of an Efficient Portfolio. A comparison with the weights obtained by using the Sharpe ratio – a traditional risk diversity measure – is also reported.

Suggested Citation

  • Ponta, Linda & Carbone, Anna, 2018. "Information measure for financial time series: Quantifying short-term market heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 132-144.
  • Handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:132-144
    DOI: 10.1016/j.physa.2018.06.085

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Gianni Pola, 2016. "On entropy and portfolio diversification," Journal of Asset Management, Palgrave Macmillan, vol. 17(4), pages 218-228, July.
    3. Smimou, K. & Bector, C.R. & Jacoby, G., 2007. "A subjective assessment of approximate probabilities with a portfolio application," Research in International Business and Finance, Elsevier, vol. 21(2), pages 134-160, June.
    4. Bera, Anil K. & Bilias, Yannis, 2002. "The MM, ME, ML, EL, EF and GMM approaches to estimation: a synthesis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 51-86, March.
    5. Gunasekarage, Abeyratna & Power, David M., 2001. "The profitability of moving average trading rules in South Asian stock markets," Emerging Markets Review, Elsevier, vol. 2(1), pages 17-33, March.
    6. Chandrinos, Spyros K. & Lagaros, Nikos D., 2018. "Construction of currency portfolios by means of an optimized investment strategy," Operations Research Perspectives, Elsevier, vol. 5(C), pages 32-44.
    7. Jianshe Ou, 2005. "Theory of portfolio and risk based on incremental entropy," Journal of Risk Finance, Emerald Group Publishing, vol. 6(1), pages 31-39, January.
    8. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Jiuping Xu & Xiaoyang Zhou & Desheng Wu, 2011. "Portfolio selection using λ mean and hybrid entropy," Annals of Operations Research, Springer, vol. 185(1), pages 213-229, May.
    11. Golan, Amos, 2008. "Information and Entropy Econometrics — A Review and Synthesis," Foundations and Trends(R) in Econometrics, now publishers, vol. 2(1–2), pages 1-145, February.
    12. Anil Bera & Sung Park, 2008. "Optimal Portfolio Diversification Using the Maximum Entropy Principle," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 484-512.
    13. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    14. Contreras, Javier & Rodríguez, Yeny E. & Sosa, Aníbal, 2017. "Construction of an efficient portfolio of power purchase decisions based on risk-diversification tradeoff," Energy Economics, Elsevier, vol. 64(C), pages 286-297.
    15. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    16. Frömmel, Michael & Lampaert, Kevin, 2016. "Does frequency matter for intraday technical trading?," Finance Research Letters, Elsevier, vol. 18(C), pages 177-183.
    17. Bekiros, Stelios & Nguyen, Duc Khuong & Sandoval Junior, Leonidas & Uddin, Gazi Salah, 2017. "Information diffusion, cluster formation and entropy-based network dynamics in equity and commodity markets," European Journal of Operational Research, Elsevier, vol. 256(3), pages 945-961.
    18. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    19. Carbone, Anna & Stanley, H. Eugene, 2007. "Scaling properties and entropy of long-range correlated time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(1), pages 21-24.
    20. Meucci, A. & Nicolosi, M., 2016. "Dynamic portfolio management with views at multiple horizons," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 495-518.
    21. Nikolay Gospodinov & Esfandiar Maasoumi, 2017. "General Aggregation of Misspecified Asset Pricing Models," FRB Atlanta Working Paper 2017-10, Federal Reserve Bank of Atlanta.
    22. Smith, David M. & Wang, Na & Wang, Ying & Zychowicz, Edward J., 2016. "Sentiment and the Effectiveness of Technical Analysis: Evidence from the Hedge Fund Industry," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(6), pages 1991-2013, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, Open Access Journal, vol. 11(10), pages 1-31, October.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:132-144. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.