IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921008316.html
   My bibliography  Save this article

Analysis of time series using a new entropy plane based on past entropy

Author

Listed:
  • Qin, Guyue
  • Shang, Pengjian

Abstract

Complexity is an important feature of complex time series. This paper proposes a new entropy plane using past Tsallis entropy and past Re´nyi entropy by weighted permutation pattern (PTEWP and PREWP), to quantify the complexity of time series. Through simulated data and actual data, we have verified the effectiveness of the entropy plane method. The results show that the new entropy plane can be used as an effective tool to distinguish financial markets.

Suggested Citation

  • Qin, Guyue & Shang, Pengjian, 2021. "Analysis of time series using a new entropy plane based on past entropy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008316
    DOI: 10.1016/j.chaos.2021.111477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Backus & Mikhail Chernov & Stanley Zin, 2014. "Sources of Entropy in Representative Agent Models," Journal of Finance, American Finance Association, vol. 69(1), pages 51-99, February.
    2. M. Mirali & S. Baratpour, 2017. "Dynamic version of weighted cumulative residual entropy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(22), pages 11047-11059, November.
    3. Constantino Tsallis & Celia Anteneodo & Lisa Borland & Roberto Osorio, 2003. "Nonextensive statistical mechanics and economics," Papers cond-mat/0301307, arXiv.org.
    4. Ponta, Linda & Carbone, Anna, 2018. "Information measure for financial time series: Quantifying short-term market heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 132-144.
    5. M. Mirali & S. Baratpour & V. Fakoor, 2017. "On weighted cumulative residual entropy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(6), pages 2857-2869, March.
    6. Ponta, Linda & Murialdo, Pietro & Carbone, Anna, 2021. "Information measure for long-range correlated time series: Quantifying horizon dependence in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    7. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    8. Linda Ponta & Anna Carbone, 2017. "Information measure for financial time series: quantifying short-term market heterogeneity," Papers 1710.07331, arXiv.org, revised Feb 2018.
    9. Asok Nanda & Prasanta Paul, 2006. "Some Properties of Past Entropy and their Applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 64(1), pages 47-61, August.
    10. Oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2007. "Market efficiency in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 209-212.
    11. Lan, Boon Leong & Tan, Ying Oon, 2007. "Statistical properties of stock market indices of different economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 605-611.
    12. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    13. Felix Belzunce & Jorge Navarro & José M. Ruiz & Yolanda del Aguila, 2004. "Some results on residual entropy function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(2), pages 147-161, May.
    14. Dai, Yimei & He, Jiayi & Wu, Yue & Chen, Shijian & Shang, Pengjian, 2019. "Generalized entropy plane based on permutation entropy and distribution entropy analysis for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 217-231.
    15. Tsallis, Constantino & Anteneodo, Celia & Borland, Lisa & Osorio, Roberto, 2003. "Nonextensive statistical mechanics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Li, Sange & Shang, Pengjian, 2022. "A new complexity measure: Modified discrete generalized past entropy based on grain exponent," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhuo & Shang, Pengjian, 2021. "Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
    3. V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
    4. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    5. Pietro Murialdo & Linda Ponta & Anna Carbone, 2020. "Long-Range Dependence in Financial Markets: a Moving Average Cluster Entropy Approach," Papers 2004.14736, arXiv.org.
    6. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Ponta, Linda & Murialdo, Pietro & Carbone, Anna, 2021. "Information measure for long-range correlated time series: Quantifying horizon dependence in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    8. Marco A. S. Trindade & Sergio Floquet & Lourival M. S. Filho, 2018. "Portfolio Theory, Information Theory and Tsallis Statistics," Papers 1811.07237, arXiv.org, revised Oct 2019.
    9. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Nonextensive triplets in cryptocurrency exchanges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1069-1074.
    10. Stavroyiannis, S. & Makris, I. & Nikolaidis, V., 2010. "Non-extensive properties, multifractality, and inefficiency degree of the Athens Stock Exchange General Index," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 19-24, January.
    11. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    12. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    13. Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
    14. Tapiero, Oren J., 2013. "A maximum (non-extensive) entropy approach to equity options bid–ask spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3051-3060.
    15. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    16. Gu, Gao-Feng & Ren, Fei & Ni, Xiao-Hui & Chen, Wei & Zhou, Wei-Xing, 2010. "Empirical regularities of opening call auction in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 278-286.
    17. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    18. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    20. Abdolsaeed Toomaj & Antonio Di Crescenzo, 2020. "Connections between Weighted Generalized Cumulative Residual Entropy and Variance," Mathematics, MDPI, vol. 8(7), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.