IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2701-d174798.html
   My bibliography  Save this article

An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network

Author

Listed:
  • Masoud Ahmadipour

    (Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Center of Advanced Power and Energy Research (CAPER), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Hashim Hizam

    (Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Center of Advanced Power and Energy Research (CAPER), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Mohammad Lutfi Othman

    (Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Center of Advanced Power and Energy Research (CAPER), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Mohd Amran Mohd Radzi

    (Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Center of Advanced Power and Energy Research (CAPER), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

Abstract

This paper proposes a new islanding detection technique based on the combination of a wavelet packet transform (WPT) and a probabilistic neural network (PNN) for grid-tied photovoltaic systems. The point of common coupling (PCC) voltage is measured and processed by the WPT to find the normalized Shannon entropy (NSE) and the normalized logarithmic energy entropy (NLEE). Subsequently, the yield feature vectors are fed to the PNN classifier to classify the disturbances. The PNN is trained with different spread factors to obtain better classification accuracy. For the best performance of the proposed method, the precise analysis is done for the selection of the type of input data for the PNN, the type of mother wavelet, and the required transform level which is based on the accuracy, simplicity, specificity, speed, and cost parameters. The results show that, by using normalized Shannon entropy and the normalized logarithmic energy entropy, not only it offers simplicity, specificity and reduced costs, it also has better accuracy compared to other smart and passive methods. Based on the results, the proposed islanding detection technique is highly accurate and does not mal-operate during islanding and non-islanding events.

Suggested Citation

  • Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2701-:d:174798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karimi, M. & Mokhlis, H. & Naidu, K. & Uddin, S. & Bakar, A.H.A., 2016. "Photovoltaic penetration issues and impacts in distribution network – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 594-605.
    2. Heidari, Mehrdad & Seifossadat, Ghodratollah & Razaz, Morteza, 2013. "Application of decision tree and discrete wavelet transform for an optimized intelligent-based islanding detection method in distributed systems with distributed generations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 525-532.
    3. Ponta, Linda & Carbone, Anna, 2018. "Information measure for financial time series: Quantifying short-term market heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 132-144.
    4. Ponta, Linda & Raberto, Marco & Teglio, Andrea & Cincotti, Silvano, 2018. "An Agent-based Stock-flow Consistent Model of the Sustainable Transition in the Energy Sector," Ecological Economics, Elsevier, vol. 145(C), pages 274-300.
    5. Karegar, H. Kazemi & Sobhani, B., 2012. "Wavelet transform method for islanding detection of wind turbines," Renewable Energy, Elsevier, vol. 38(1), pages 94-106.
    6. Kuei-Hsiang Chao & Min-Sen Yang & Chin-Pao Hung, 2013. "Islanding Detection Method of a Photovoltaic Power Generation System Based on a CMAC Neural Network," Energies, MDPI, vol. 6(8), pages 1-18, August.
    7. Kong, Xiangrui & Xu, Xiaoyuan & Yan, Zheng & Chen, Sijie & Yang, Huoming & Han, Dong, 2018. "Deep learning hybrid method for islanding detection in distributed generation," Applied Energy, Elsevier, vol. 210(C), pages 776-785.
    8. Linda Ponta & Anna Carbone, 2017. "Information measure for financial time series: quantifying short-term market heterogeneity," Papers 1710.07331, arXiv.org, revised Feb 2018.
    9. Khamis, Aziah & Shareef, Hussain & Bizkevelci, Erdal & Khatib, Tamer, 2013. "A review of islanding detection techniques for renewable distributed generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 483-493.
    10. Guo, Xiaoqiang & Xu, David & Wu, Bin, 2014. "Overview of anti-islanding US patents for grid-connected inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 311-317.
    11. Li, Canbing & Cao, Chi & Cao, Yijia & Kuang, Yonghong & Zeng, Long & Fang, Baling, 2014. "A review of islanding detection methods for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 211-220.
    12. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    13. Vyas, Shashank & Kumar, Rajesh & Kavasseri, Rajesh, 2017. "Data analytics and computational methods for anti-islanding of renewable energy based Distributed Generators in power grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 493-502.
    14. Allegra De Filippo & Michele Lombardi & Michela Milano, 2017. "User-Aware Electricity Price Optimization for the Competitive Market," Energies, MDPI, vol. 10(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi & Nikta Chireh, 2019. "A Fast Fault Identification in a Grid-Connected Photovoltaic System Using Wavelet Multi-Resolution Singular Spectrum Entropy and Support Vector Machine," Energies, MDPI, vol. 12(13), pages 1-18, June.
    2. Karthikeyan Subramanian & Ashok Kumar Loganathan, 2020. "Islanding Detection Using a Micro-Synchrophasor for Distribution Systems with Distributed Generation," Energies, MDPI, vol. 13(19), pages 1-31, October.
    3. Stéfano Frizzo Stefenon & Roberto Zanetti Freire & Leandro dos Santos Coelho & Luiz Henrique Meyer & Rafael Bartnik Grebogi & William Gouvêa Buratto & Ademir Nied, 2020. "Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System," Energies, MDPI, vol. 13(2), pages 1-19, January.
    4. Qiang Guo & Jing Wu & Haibin Jin & Cheng Peng, 2018. "An Innovative Calibration Scheme for Interharmonic Analyzers in Power Systems under Asynchronous Sampling," Energies, MDPI, vol. 12(1), pages 1-10, December.
    5. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    6. Veerapandiyan Veerasamy & Noor Izzri Abdul Wahab & Rajeswari Ramachandran & Muhammad Mansoor & Mariammal Thirumeni & Mohammad Lutfi Othman, 2018. "High Impedance Fault Detection in Medium Voltage Distribution Network Using Discrete Wavelet Transform and Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 11(12), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    2. Ahmadipour, Masoud & Hizam, Hashim & Othman, Mohammad Lutfi & Radzi, Mohd Amran Mohd & Murthy, Avinash Srikanta, 2018. "Islanding detection technique using Slantlet Transform and Ridgelet Probabilistic Neural Network in grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 231(C), pages 645-659.
    3. Wei Dong & Qiang Yang & Xinli Fang, 2018. "Multi-Step Ahead Wind Power Generation Prediction Based on Hybrid Machine Learning Techniques," Energies, MDPI, vol. 11(8), pages 1-19, July.
    4. Khan, Mohammed Ali & Haque, Ahteshamul & Kurukuru, V.S. Bharath & Saad, Mekhilef, 2022. "Islanding detection techniques for grid-connected photovoltaic systems-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Min-Sung Kim & Raza Haider & Gyu-Jung Cho & Chul-Hwan Kim & Chung-Yuen Won & Jong-Seo Chai, 2019. "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems," Energies, MDPI, vol. 12(5), pages 1-21, March.
    6. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    7. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    8. Laghari, J.A. & Mokhlis, H. & Karimi, M. & Bakar, A.H.A. & Mohamad, Hasmaini, 2015. "An islanding detection strategy for distribution network connected with hybrid DG resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 662-676.
    9. Balamurugan, M. & Sahoo, Sarat Kumar & Sukchai, Sukruedee, 2017. "Application of soft computing methods for grid connected PV system: A technological and status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1493-1508.
    10. Qin, Guyue & Shang, Pengjian, 2021. "Analysis of time series using a new entropy plane based on past entropy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Shouzhen Zeng & Shahzaib Asharf & Muhammad Arif & Saleem Abdullah, 2019. "Application of Exponential Jensen Picture Fuzzy Divergence Measure in Multi-Criteria Group Decision Making," Mathematics, MDPI, vol. 7(2), pages 1-16, February.
    12. V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
    13. Jian Yang & Xin Zhao & Haikun Wei & Kanjian Zhang, 2019. "Sample Selection Based on Active Learning for Short-Term Wind Speed Prediction," Energies, MDPI, vol. 12(3), pages 1-12, January.
    14. Pietro Murialdo & Linda Ponta & Anna Carbone, 2020. "Long-Range Dependence in Financial Markets: a Moving Average Cluster Entropy Approach," Papers 2004.14736, arXiv.org.
    15. Rosa Anna Mastromauro, 2020. "Grid Synchronization and Islanding Detection Methods for Single-Stage Photovoltaic Systems," Energies, MDPI, vol. 13(13), pages 1-25, July.
    16. Ponta, Linda & Murialdo, Pietro & Carbone, Anna, 2021. "Information measure for long-range correlated time series: Quantifying horizon dependence in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    17. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    18. Chiou-Jye Huang & Ping-Huan Kuo, 2018. "A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    19. Srete Nikolovski & Hamid Reza Baghaee & Dragan Mlakić, 2018. "ANFIS-Based Peak Power Shaving/Curtailment in Microgrids Including PV Units and BESSs," Energies, MDPI, vol. 11(11), pages 1-23, October.
    20. Daniel Ganea & Elena Mereuta & Liliana Rusu, 2018. "Estimation of the Near Future Wind Power Potential in the Black Sea," Energies, MDPI, vol. 11(11), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2701-:d:174798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.