IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v416y2014icp378-385.html
   My bibliography  Save this article

A manipulator game model of urban public traffic network

Author

Listed:
  • Chang, Hui
  • Xu, Xiu-Lian
  • Hu, Chin-Kun
  • Fu, Chunhua
  • Feng, Ai-xia
  • He, Da-Ren

Abstract

Urban public traffic networks are typical complex systems. Understanding their evolution mechanism attracts much attention in recent years. Here, we propose that the evolution of urban public traffic network can be considered as a game process between two network manipulators, i.e., passengers and company, and the equilibrium solution to the game determines the steady-state behavior of the network. Both analytical solution and numerical simulations to such game model can well describe the empirical data collected from the urban public traffic systems in four Chinese cities (Beijing, Shanghai, Nanjing, and Hangzhou) and the Boston subway. Our results suggest that the manipulator game model grasps the fundamental characteristics of the evolution mechanism of the urban public traffic systems. Similar idea may be extended to other complex systems which have small number of manipulators.

Suggested Citation

  • Chang, Hui & Xu, Xiu-Lian & Hu, Chin-Kun & Fu, Chunhua & Feng, Ai-xia & He, Da-Ren, 2014. "A manipulator game model of urban public traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 378-385.
  • Handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:378-385
    DOI: 10.1016/j.physa.2014.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007730
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Pei-Pei & Kan Chen, & He, Yue & Zhou, Tao & Su, Bei-Bei & Jin, Yingdi & Chang, Hui & Zhou, Yue-Ping & Sun, Li-Cheng & Wang, Bing-Hong & He, Da-Ren, 2006. "Model and empirical study on some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 599-616.
    2. Kidokoro, Yukihiro, 2006. "Benefit estimation of transport projects--a representative consumer approach," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 521-542, August.
    3. Zubieta, Lourdes, 1998. "A network equilibrium model for oligopolistic competition in city bus services," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 413-422, August.
    4. Su, B.B. & Chang, H. & Chen, Y.-Z. & He, D.R., 2007. "A game theory model of urban public traffic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 291-297.
    5. C.-L. Tang & W.-X. Wang & X. Wu & B.-H. Wang, 2006. "Effects of average degree on cooperation in networked evolutionary game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 411-415, October.
    6. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    7. Chang, Hui & Su, Bei-Bei & Zhou, Yue-Ping & He, Da-Ren, 2007. "Assortativity and act degree distribution of some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 687-702.
    8. H. Fort & N. Pérez, 2005. "Economic demography in fuzzy spatial dilemmas and power laws," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(1), pages 109-113, March.
    9. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    10. Gao, Kun & Wang, Wen-Xu & Wang, Bing-Hong, 2007. "Self-questioning games and ping-pong effect in the BA network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 528-538.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Zeng, Hong-Li & Zhu, Chen-Ping & Wang, Shu-Xuan & Guo, Yan-Dong & Gu, Zhi-Ming & Hu, Chin-Kun, 2020. "Scaling behaviors and self-organized criticality of two-dimensional small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Yao, Wang & Jia, Ning & Zhong, Shiquan & Li, Liying, 2018. "Best response game of traffic on road network of non-signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 386-401.
    4. Feng, Shumin & Xin, Mengwei & Lv, Tianling & Hu, Baoyu, 2019. "A novel evolving model of urban rail transit networks based on the local-world theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Wang, Yanjun & Zhang, Qiqian & Zhu, Chenping & Hu, Minghua & Duong, Vu, 2016. "Human activity under high pressure: A case study on fluctuation scaling of air traffic controller’s communication behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 151-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
    2. Hu, Baoyu & Feng, Shumin & Nie, Cen, 2017. "Bus transport network of Shenyang considering competitive and cooperative relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 259-268.
    3. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    4. Xu, Xiu-Lian & Fu, Chun-Hua & Chang, Hui & He, Da-Ren, 2011. "An evolution model of complex systems with simultaneous cooperation and competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3719-3726.
    5. Feng, Ai-Xia & Fu, Chun-Hua & Xu, Xiu-Lian & Zhou, Yue-Ping & Chang, Hui & Wang, Jian & He, Da-Ren & Feng, Guo-Lin, 2012. "An extended clique degree distribution and its heterogeneity in cooperation–competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2454-2462.
    6. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    7. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    8. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    9. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    10. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    12. Hu, Zhibin & Wu, Guangdong & Han, Yilong & Niu, Yanliang, 2023. "Unraveling the dynamic changes of high-speed rail network with urban development: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    13. Zhang, Hui & Zhuge, Chengxiang & Yu, Xiaohua, 2018. "Identifying hub stations and important lines of bus networks: A case study in Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 394-402.
    14. Feng, Shumin & Xin, Mengwei & Lv, Tianling & Hu, Baoyu, 2019. "A novel evolving model of urban rail transit networks based on the local-world theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    16. Preston, John, 2008. "Competition in transit markets," Research in Transportation Economics, Elsevier, vol. 23(1), pages 75-84, January.
    17. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    18. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    19. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    20. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:378-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.