IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v383y2007i2p687-702.html
   My bibliography  Save this article

Assortativity and act degree distribution of some collaboration networks

Author

Listed:
  • Chang, Hui
  • Su, Bei-Bei
  • Zhou, Yue-Ping
  • He, Da-Ren

Abstract

Empirical investigation results on weighted and un-weighted assortativity, act degree distribution, degree distribution and node strength distribution of nine real world collaboration networks have been presented. The investigations propose that act degree distribution, degree distribution and node strength distribution usually show so-called “shifted power law” (SPL) function forms, which can continuously vary from an ideal power law to an ideal exponential decay. Two parameters, α and η, can be used for description of the distribution functions. Another conclusion is that assortativity coefficient and the parameter, α or η, is monotonously dependent on each other. By the collaboration network evolution model introduced in a reference [P. Zhang et al., Physica A 360 (2006) 599], we analytically derived the SPL distributions, which typically appeared in general situations where nodes are selected partially randomly, with a probability p, and partially by linear preferential principle, with the probability 1-p. The analytic discussion gives an explicit expression on the relationship between the random selection proportion p and the parameters α and η. The numerical simulation results by the model show a monotonic dependence of assortativity on the random selection proportion p. The empirically obtained assortativity versus α or η curve for the four collaboration networks with small maximal act size, Tmax, shows a good agreement with the model prediction. According to the curves, one can qualitatively judge the random selection proportion of the real world network in its evolution process.

Suggested Citation

  • Chang, Hui & Su, Bei-Bei & Zhou, Yue-Ping & He, Da-Ren, 2007. "Assortativity and act degree distribution of some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 687-702.
  • Handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:687-702
    DOI: 10.1016/j.physa.2007.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107004244
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.04.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Chen & Guy G. Gable & Haibo Hu, 2013. "Communication and organizational social networks: a simulation model," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 460-479, December.
    2. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    3. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
    4. Wang, Qingyun & Cao, Shengyu & Xiao, Yayuan, 2019. "Statistical characteristics of international conflict and cooperation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Wang, Peng & Ma, Qiang, 2017. "From heavy-tailed to exponential distribution of interevent time in cellphone top-up behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 10-17.
    6. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    7. Hu, Baoyu & Feng, Shumin & Nie, Cen, 2017. "Bus transport network of Shenyang considering competitive and cooperative relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 259-268.
    8. Chang, Hui & Xu, Xiu-Lian & Hu, Chin-Kun & Fu, Chunhua & Feng, Ai-xia & He, Da-Ren, 2014. "A manipulator game model of urban public traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 378-385.
    9. Wang, Xu-Ming & Wang, Peng & Zhang, Ping & Hao, Rui & Huo, Jie, 2012. "Statistical dynamics of early river networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4497-4505.
    10. Peng, Peng & Yang, Yu & Cheng, Shifen & Lu, Feng & Yuan, Zimu, 2019. "Hub-and-spoke structure: Characterizing the global crude oil transport network with mass vessel trajectories," Energy, Elsevier, vol. 168(C), pages 966-974.
    11. Yang, Xu-Hua & Chen, Guang & Sun, Bao & Chen, Sheng-Yong & Wang, Wan-Liang, 2011. "Bus transport network model with ideal n-depth clique network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4660-4672.
    12. Lizhi Xing & Qing Ye & Jun Guan, 2016. "Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
    13. Huo, Jie & Wang, Xu-Ming & Zhao, Ning & Hao, Rui, 2016. "Statistical characteristics of dynamics for population migration driven by the economic interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 123-134.
    14. Yu, Ping & Wang, Zhiping & Wang, Peiwen & Yin, Haofei & Wang, Jia, 2022. "Dynamic evolution of shipping network based on hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    15. Pigorsch, U. & Sabek, M., 2022. "Assortative mixing in weighted directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Arcagni, Alberto & Grassi, Rosanna & Stefani, Silvana & Torriero, Anna, 2021. "Extending assortativity: An application to weighted social networks," Journal of Business Research, Elsevier, vol. 129(C), pages 774-783.
    17. Wang, Zhiping & Yin, Haofei & Jiang, Xin, 2020. "Exploring the dynamic growth mechanism of social networks using evolutionary hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    18. Sui, Yi & Shao, Fengjing & Yu, Xiang & Sun, Rencheng & Li, Shujing, 2019. "Public transport network model based on layer operations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 984-995.
    19. Suo, Qi & Guo, Jin-Li & Sun, Shiwei & Liu, Han, 2018. "Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 141-148.
    20. Xu, Xiu-Lian & Fu, Chun-Hua & Chang, Hui & He, Da-Ren, 2011. "An evolution model of complex systems with simultaneous cooperation and competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3719-3726.
    21. Feng, Ai-Xia & Fu, Chun-Hua & Xu, Xiu-Lian & Zhou, Yue-Ping & Chang, Hui & Wang, Jian & He, Da-Ren & Feng, Guo-Lin, 2012. "An extended clique degree distribution and its heterogeneity in cooperation–competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2454-2462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:383:y:2007:i:2:p:687-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.