IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i16p4165-4180.html
   My bibliography  Save this article

Social structure of Facebook networks

Author

Listed:
  • Traud, Amanda L.
  • Mucha, Peter J.
  • Porter, Mason A.

Abstract

We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes–gender, class year, major, high school, and residence–at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

Suggested Citation

  • Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:16:p:4165-4180
    DOI: 10.1016/j.physa.2011.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111009186
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yan & Friend, A.J. & Traud, Amanda L. & Porter, Mason A. & Fowler, James H. & Mucha, Peter J., 2008. "Community structure in Congressional cosponsorship networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1705-1712.
    2. Hunter, David R. & Handcock, Mark S. & Butts, Carter T. & Goodreau, Steven M. & Morris, Martina, 2008. "ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i03).
    3. González, M.C. & Herrmann, H.J. & Kertész, J. & Vicsek, T., 2007. "Community structure and ethnic preferences in school friendship networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 307-316.
    4. Cranmer, Skyler J. & Desmarais, Bruce A., 2011. "Inferential Network Analysis with Exponential Random Graph Models," Political Analysis, Cambridge University Press, vol. 19(1), pages 66-86, January.
    5. Mayer, Adalbert & Puller, Steven L., 2008. "The old boy (and girl) network: Social network formation on university campuses," Journal of Public Economics, Elsevier, vol. 92(1-2), pages 329-347, February.
    6. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Dongxiao & Wang, Hongcui & Jin, Di & Liu, Baolin, 2016. "A model framework for the enhancement of community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 602-612.
    2. Shakeri, Heman & Moradi-Jamei, Behnaz & Poggi-Corradini, Pietro & Albin, Nathan & Scoglio, Caterina, 2018. "Generalization of effective conductance centrality for egonetworks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 127-138.
    3. Yuan, Wei-Guo & Liu, Yun, 2015. "A mixing evolution model for bidirectional microblog user networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 167-179.
    4. Vicente, R. & Susemihl, A. & Jericó, J.P. & Caticha, N., 2014. "Moral foundations in an interacting neural networks society: A statistical mechanics analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 124-138.
    5. Yi-Shan Sung & Dashun Wang & Soundar Kumara, 0. "Uncovering the effect of dominant attributes on community topology: A case of facebook networks," Information Systems Frontiers, Springer, vol. 0, pages 1-12.
    6. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    7. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2020. "Entropy based flow transfer for influence dissemination in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    8. Karimi, Fariba & Ramenzoni, Verónica C. & Holme, Petter, 2014. "Structural differences between open and direct communication in an online community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 263-273.
    9. Yi-Shan Sung & Dashun Wang & Soundar Kumara, 2018. "Uncovering the effect of dominant attributes on community topology: A case of facebook networks," Information Systems Frontiers, Springer, vol. 20(5), pages 1041-1052, October.
    10. Taghavian, Fatemeh & Salehi, Mostafa & Teimouri, Mehdi, 2017. "A local immunization strategy for networks with overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 148-156.
    11. Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong & Wang, Wan-Liang & Wang, Lei, 2014. "Study on some bus transport networks in China with considering spatial characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 1-10.
    12. Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020. "Detecting Latent Communities in Network Formation Models," Economics and Statistics Working Papers 12-2020, Singapore Management University, School of Economics.
    13. Marya Bazzi & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2014. "Community detection in temporal multilayer networks, with an application to correlation networks," Papers 1501.00040, arXiv.org, revised Dec 2017.
    14. Ciotti, Valerio & Bianconi, Ginestra & Capocci, Andrea & Colaiori, Francesca & Panzarasa, Pietro, 2015. "Degree correlations in signed social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 25-39.
    15. Carlo Drago & Livia Amidani Aliberti & Davide Carbonai, 2014. "Measuring Gender Differences in Information Sharing Using Network Analysis: the Case of the Austrian Interlocking Directorship Network in 2009," Working Papers 2014.61, Fondazione Eni Enrico Mattei.
    16. Yakir Berchenko & Jonathan D. Rosenblatt & Simon D. W. Frost, 2017. "Modeling and analyzing respondent‐driven sampling as a counting process," Biometrics, The International Biometric Society, vol. 73(4), pages 1189-1198, December.
    17. Saxena, Rakhi & Kaur, Sharanjit & Bhatnagar, Vasudha, 2019. "Identifying similar networks using structural hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Tarbush, Bassel & Teytelboym, Alexander, 2017. "Social groups and social network formation," Games and Economic Behavior, Elsevier, vol. 103(C), pages 286-312.
    19. Sun, Xin & Dong, Junyu & Tang, Ruichun & Xu, Mantao & Qi, Lin & Cai, Yang, 2015. "Topological evolution of virtual social networks by modeling social activities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 259-267.
    20. Jason Jung, 2014. "Understanding information propagation on online social tagging systems: a case study on Flickr," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(2), pages 745-754, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    2. Bruce A Desmarais & Skyler J Cranmer, 2012. "Statistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-12, January.
    3. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Ji Youn (Rose) Kim & Michael Howard & Emily Cox Pahnke & Warren Boeker, 2016. "Understanding network formation in strategy research: Exponential random graph models," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 22-44, January.
    4. Desmarais, B.A. & Cranmer, S.J., 2012. "Statistical mechanics of networks: Estimation and uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1865-1876.
    5. Neal, Zachary & Domagalski, Rachel & Yan, Xiaoqin, 2020. "Party Control as a Context for Homophily in Collaborations among US House Representatives, 1981 -- 2015," OSF Preprints qwdxs, Center for Open Science.
    6. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    7. Cody J. Dey & James S. Quinn, 2014. "Individual attributes and self-organizational processes affect dominance network structure in pukeko," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(6), pages 1402-1408.
    8. Gauer, Florian & Landwehr, Jakob, 2016. "Continuous homophily and clustering in random networks," Center for Mathematical Economics Working Papers 515, Center for Mathematical Economics, Bielefeld University.
    9. Goodreau, Steven M. & Handcock, Mark S. & Hunter, David R. & Butts, Carter T. & Morris, Martina, 2008. "A statnet Tutorial," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i09).
    10. Sudeshna Paul & A. James O'Malley, 2013. "Hierarchical longitudinal models of relationships in social networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 705-722, November.
    11. Angel Ortiz-Pelaez & Getaneh Ashenafi & Francois Roger & Agnes Waret-Szkuta, 2012. "Can Geographical Factors Determine the Choices of Farmers in the Ethiopian Highlands to Trade in Livestock Markets?," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    12. Pavel N. Krivitsky & Laura M. Koehly & Christopher Steven Marcum, 2020. "Exponential-Family Random Graph Models for Multi-Layer Networks," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 630-659, September.
    13. Dzemski, Andreas, 2017. "An empirical model of dyadic link formation in a network with unobserved heterogeneity," Working Papers in Economics 698, University of Gothenburg, Department of Economics, revised Apr 2018.
    14. Gallemore, Caleb & Jespersen, Kristjan, 2016. "Transnational Markets for Sustainable Development Governance: The Case of REDD+," World Development, Elsevier, vol. 86(C), pages 79-94.
    15. Tom Broekel & Pierre-Alexandre Balland & Martijn Burger & Frank Oort, 2014. "Modeling knowledge networks in economic geography: a discussion of four methods," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 423-452, September.
    16. Ivan Cucco, 2014. "Network-based policies and innovation networks in two Italian regions: a comparison through a social selection model," STUDI ECONOMICI, FrancoAngeli Editore, vol. 2014(114), pages 78-96.
    17. Joshua Daniel Loyal & Yuguo Chen, 2020. "Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic," International Statistical Review, International Statistical Institute, vol. 88(2), pages 419-440, August.
    18. Johannes Pol, 2019. "Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 845-875, October.
    19. Vishesh Karwa & Pavel N. Krivitsky & Aleksandra B. Slavković, 2017. "Sharing social network data: differentially private estimation of exponential family random-graph models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 481-500, April.
    20. He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:16:p:4165-4180. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.