IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Discounting models for outcomes over continuous time

  • Harvey, Charles M.
  • Østerdal, Lars Peter

Events that occur over a period of time can be described either as sequences of outcomes at discrete times or as functions of outcomes in an interval of time. This paper presents discounting models for events of the latter type. Conditions on preferences are shown to be satisfied if and only if the preferences are represented by a function that is an integral of a discounting function times a scale defined on outcomes at instants of time.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 48 (2012)
Issue (Month): 5 ()
Pages: 284-294

in new window

Handle: RePEc:eee:mateco:v:48:y:2012:i:5:p:284-294
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. W. M. Gorman, 1968. "The Structure of Utility Functions," Review of Economic Studies, Oxford University Press, vol. 35(4), pages 367-390.
  2. Charles M. Harvey & Lars Peter Østerdal, 2007. "Integral-Value Models for Outcomes over Continuous Time," Discussion Papers 07-10, University of Copenhagen. Department of Economics.
  3. Harvey, Charles M., 1994. "The reasonableness of non-constant discounting," Journal of Public Economics, Elsevier, vol. 53(1), pages 31-51, January.
  4. Kopylov, Igor, 2010. "Simple axioms for countably additive subjective probability," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 867-876, September.
  5. Charles M. Harvey, 1986. "Value Functions for Infinite-Period Planning," Management Science, INFORMS, vol. 32(9), pages 1123-1139, September.
  6. A. C. Williams & J. I. Nassar, 1966. "Financial Measurement of Capital Investments," Management Science, INFORMS, vol. 12(11), pages 851-864, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:48:y:2012:i:5:p:284-294. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.