IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v44y2008i12p1379-1384.html
   My bibliography  Save this article

Geodesics on the equilibrium manifold

Author

Listed:
  • Loi, Andrea
  • Matta, Stefano

Abstract

We show the existence of a Riemannian metric on the equilibrium manifold such that a minimal geodesic connecting two (sufficiently close) regular equilibria intersects the set of critical equilibria in a finite number of points. This metric represents a solution to the following problem: given two (sufficiently close) regular equilibria, find the shortest path connecting them which encounters the set of critical equilibria in a finite number of points. Furthermore, this metric can be constructed in such a way to agree, outside an arbitrary small neighborhood of the set of critical equilibria, to any given metric with economic meaning.

Suggested Citation

  • Loi, Andrea & Matta, Stefano, 2008. "Geodesics on the equilibrium manifold," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1379-1384, December.
  • Handle: RePEc:eee:mateco:v:44:y:2008:i:12:p:1379-1384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(08)00070-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiappori, P. -A. & Ekeland, I. & Kubler, F. & Polemarchakis, H. M., 2004. "Testable implications of general equilibrium theory: a differentiable approach," Journal of Mathematical Economics, Elsevier, vol. 40(1-2), pages 105-119, February.
    2. repec:ebl:ecbull:v:4:y:2006:i:30:p:1-9 is not listed on IDEAS
    3. Yves Balasko, 2004. "The equilibrium manifold keeps the memory of individual demand functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 24(3), pages 493-501, October.
    4. repec:ebl:ecbull:v:4:y:2005:i:7:p:1-7 is not listed on IDEAS
    5. Brown, Donald J & Matzkin, Rosa L, 1996. "Testable Restrictions on the Equilibrium Manifold," Econometrica, Econometric Society, vol. 64(6), pages 1249-1262, November.
    6. Dierker, Egbert, 1993. "Regular economies," Handbook of Mathematical Economics,in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 4, volume 2, chapter 17, pages 795-830 Elsevier.
    7. Balasko, Yves, 1992. "The set of regular equilibria," Journal of Economic Theory, Elsevier, vol. 58(1), pages 1-8, October.
    8. Loi, Andrea & Matta, Stefano, 2009. "Evolution paths on the equilibrium manifold," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 854-859, December.
    9. Garratt, Rod & Goenka, Aditya, 1995. "Income redistributions without catastrophes," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 441-455.
    10. Balasko, Yves, 1979. "A geometric approach to equilibrium analysis," Journal of Mathematical Economics, Elsevier, vol. 6(3), pages 217-228, December.
    11. Balasko, Yves, 1978. "Economic Equilibrium and Catastrophe Theory: An Introduction," Econometrica, Econometric Society, vol. 46(3), pages 557-569, May.
    12. Balasko, Yves, 1975. "The Graph of the Walras Correspondence," Econometrica, Econometric Society, vol. 43(5-6), pages 907-912, Sept.-Nov.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Loi & Stefano Matta, 2016. "On the topology of the set of critical equilibria," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(2), pages 107-126, June.
    2. Loi, Andrea & Matta, Stefano, 2011. "Catastrophes minimization on the equilibrium manifold," Journal of Mathematical Economics, Elsevier, vol. 47(4), pages 617-620.
    3. Loi, Andrea & Matta, Stefano, 2009. "Evolution paths on the equilibrium manifold," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 854-859, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:44:y:2008:i:12:p:1379-1384. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.