IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v71y2021ics0957178721000795.html
   My bibliography  Save this article

Mitigating the risk of photovoltaic power generation: A complementarity model of solar irradiation in diverse regions applied to Brazil

Author

Listed:
  • Tapia Carpio, Lucio Guido

Abstract

Several countries face the challenge of reducing the intermittency of solar photovoltaic (PV) generation due to changes in climatic conditions. Considering that Brazil has continental-scale dimensions and diversified geography, an alternative that allows smoothing the intermittency in solar PV power generation is needed. The novelty of this study lies in the proposal to allocate the production of PV solar energy between the interconnected regions of the country efficiently, forming an optimal portfolio with the highest productivity and the least intermittency. Thus, the regional allocation process for solar generation is formulated through an optimization problem with two objective functions: to increase the country's productivity and simultaneously control the variability of the supply of solar energy. This study concluded that the current planning models for the expansion in Brazil (both centralized and distributed generation) do not consider the variability of incident solar radiation in its five regions; therefore, the formation of the current regional portfolio of investments in power generation from solar PV energy is not efficient.

Suggested Citation

  • Tapia Carpio, Lucio Guido, 2021. "Mitigating the risk of photovoltaic power generation: A complementarity model of solar irradiation in diverse regions applied to Brazil," Utilities Policy, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:juipol:v:71:y:2021:i:c:s0957178721000795
    DOI: 10.1016/j.jup.2021.101245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178721000795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2021.101245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, BeomJun & Hur, Jin, 2018. "Spatial prediction of renewable energy resources for reinforcing and expanding power grids," Energy, Elsevier, vol. 164(C), pages 757-772.
    2. Rathore, Pushpendra Kumar Singh & Chauhan, Durg Singh & Singh, Rudra Pratap, 2019. "Decentralized solar rooftop photovoltaic in India: On the path of sustainable energy security," Renewable Energy, Elsevier, vol. 131(C), pages 297-307.
    3. Cavaliero, Carla Kazue Nakao & Da Silva, Ennio Peres, 2005. "Electricity generation:: regulatory mechanisms to incentive renewable alternative energy sources in Brazil," Energy Policy, Elsevier, vol. 33(13), pages 1745-1752, September.
    4. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    5. Breyer, Christian & Koskinen, Otto & Blechinger, Philipp, 2015. "Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 610-628.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Hondo, Hiroki & Moriizumi, Yue, 2017. "Employment creation potential of renewable power generation technologies: A life cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 128-136.
    8. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2020. "Spatial and temporal correlation analysis of wind power between different provinces in China," Energy, Elsevier, vol. 191(C).
    9. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    10. Silveira, Jose Luz & Tuna, Celso Eduardo & Lamas, Wendell de Queiroz, 2013. "The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 133-141.
    11. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    12. Vinel, Alexander & Mortaz, Ebrahim, 2019. "Optimal pooling of renewable energy sources with a risk-averse approach: Implications for US energy portfolio," Energy Policy, Elsevier, vol. 132(C), pages 928-939.
    13. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.
    14. Stavrakas, Vassilis & Papadelis, Sotiris & Flamos, Alexandros, 2019. "An agent-based model to simulate technology adoption quantifying behavioural uncertainty of consumers," Applied Energy, Elsevier, vol. 255(C).
    15. Carpio, Lucio Guido Tapia & Simone de Souza, Fábio, 2017. "Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: Scenarios of cost reductions," Renewable Energy, Elsevier, vol. 111(C), pages 771-780.
    16. Fragkos, Panagiotis & Paroussos, Leonidas, 2018. "Employment creation in EU related to renewables expansion," Applied Energy, Elsevier, vol. 230(C), pages 935-945.
    17. Ferraz de Andrade Santos, José Alexandre & de Jong, Pieter & Alves da Costa, Caiuby & Torres, Ednildo Andrade, 2020. "Combining wind and solar energy sources: Potential for hybrid power generation in Brazil," Utilities Policy, Elsevier, vol. 67(C).
    18. Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
    19. Paim, Maria-Augusta & Dalmarco, Arthur R. & Yang, Chung-Han & Salas, Pablo & Lindner, Sören & Mercure, Jean-Francois & de Andrade Guerra, José Baltazar Salgueirinho Osório & Derani, Cristiane & Bruce , 2019. "Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix," Energy Policy, Elsevier, vol. 128(C), pages 393-401.
    20. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
    21. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    22. Sovacool, Benjamin K., 2009. "The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?," Utilities Policy, Elsevier, vol. 17(3-4), pages 288-296, September.
    23. Simoes, Sofia & Zeyringer, Marianne & Mayr, Dieter & Huld, Thomas & Nijs, Wouter & Schmidt, Johannes, 2017. "Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria," Renewable Energy, Elsevier, vol. 105(C), pages 183-198.
    24. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    25. Hunt., Julian David & Stilpen, Daniel & de Freitas, Marcos Aurélio Vasconcelos, 2018. "A review of the causes, impacts and solutions for electricity supply crises in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 208-222.
    26. Bianco, Vincenzo & Driha, Oana M. & Sevilla-Jiménez, Martín, 2019. "Effects of renewables deployment in the Spanish electricity generation sector," Utilities Policy, Elsevier, vol. 56(C), pages 72-81.
    27. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    28. Madsen, Dorte Nørgaard & Hansen, Jan Petter, 2019. "Outlook of solar energy in Europe based on economic growth characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    29. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    30. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    31. Böhme, Gustavo S. & Fadigas, Eliane A. & Soares, Dorel & Gimenes, André L.V. & Macedo, Bruno C., 2020. "Wind speed variability and portfolio effect – A case study in the Brazilian market," Energy, Elsevier, vol. 207(C).
    32. Gonzalez Sanchez, Rocio & Kougias, Ioannis & Moner-Girona, Magda & Fahl, Fernando & Jäger-Waldau, Arnulf, 2021. "Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa," Renewable Energy, Elsevier, vol. 169(C), pages 687-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro, Gabriel Malta & Klöckl, Claude & Regner, Peter & Schmidt, Johannes & Pereira, Amaro Olimpio, 2022. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Energy Economics, Elsevier, vol. 111(C).
    2. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    3. Gabriel Malta Castro & Claude Klockl & Peter Regner & Johannes Schmidt & Amaro Olimpio Pereira Jr, 2021. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Papers 2105.08182, arXiv.org.
    4. Zhang, Chongyu & Lu, Xi & Ren, Guo & Chen, Shi & Hu, Chengyu & Kong, Zhaoyang & Zhang, Ning & Foley, Aoife M., 2021. "Optimal allocation of onshore wind power in China based on cluster analysis," Applied Energy, Elsevier, vol. 285(C).
    5. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    6. Chu, Cheng-Ta & Hawkes, Adam D., 2020. "Optimal mix of climate-related energy in global electricity systems," Renewable Energy, Elsevier, vol. 160(C), pages 955-963.
    7. Milstein, Irena & Tishler, Asher & Woo, Chi-Keung, 2022. "Wholesale electricity market economics of solar generation in Israel," Utilities Policy, Elsevier, vol. 79(C).
    8. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).
    9. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
    10. M, Jisma & Mohan, Vivek & Thomas, Mini Shaji & Madhu M, Nimal, 2022. "Risk-Calibrated conventional-renewable generation mix using master-slave portfolio approach guided by flexible investor preferencing," Energy, Elsevier, vol. 245(C).
    11. Sinsel, Simon R. & Yan, Xuqian & Stephan, Annegret, 2019. "Building resilient renewable power generation portfolios: The impact of diversification on investors’ risk and return," Applied Energy, Elsevier, vol. 254(C).
    12. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    13. Allan, Grant & Eromenko, Igor & McGregor, Peter & Swales, Kim, 2011. "The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies," Energy Policy, Elsevier, vol. 39(1), pages 6-22, January.
    14. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    15. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    16. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    17. Madlener, Reinhard & Glensk, Barbara & Weber, Veronika, 2011. "Fuzzy Portfolio Optimization of Onshore Wind Power Plants," FCN Working Papers 10/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jul 2014.
    18. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    19. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:71:y:2021:i:c:s0957178721000795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.