IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v79y2022ics0301420722003488.html
   My bibliography  Save this article

Drivers for sustainable mining waste management – A mixed-method study on the Indian Mining Industry

Author

Listed:
  • Upadhyay, Saurabh

Abstract

India's commitments at the United Nations Climate Change Conference (UNCOP26) in Glasgow, UK, reflect that India is cautiously aggressive and dedicated to its role in climate change management and carbon emission reduction goals. Several policy refinements and realignments have been done to make the sustainable goals a reality. India highly depends on coal as a fossil fuel to satiate its immediate energy requirements. This dependency makes it imperative to look at the mining waste generation and management of the mining waste in the Indian Coal Mining Industry. This study, thus, adopts an empirico-analytical approach and analyses the critical factors for sustainable mining waste management in India. The inputs are obtained from mining practitioners and experts across the industry. Fuzzy DEMATEL identifies the critical drivers for sustainable mining waste management. Results reveal factors like pressure from affected communities and the political parties influencing the sustainable practices. The organizational factors are also the critical drivers, whereas the technical and regulatory factors are less significant. The study thus concludes that the prime focus should be on the socio-political, organizational, and financial factors while designing a sustainable mining waste management practice or policy in the Indian milieu.

Suggested Citation

  • Upadhyay, Saurabh, 2022. "Drivers for sustainable mining waste management – A mixed-method study on the Indian Mining Industry," Resources Policy, Elsevier, vol. 79(C).
  • Handle: RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722003488
    DOI: 10.1016/j.resourpol.2022.102904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722003488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.102904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kopas, Jacob & York, Erin & Jin, Xiaomeng & Harish, S.P. & Kennedy, Ryan & Shen, Shiran Victoria & Urpelainen, Johannes, 2020. "Environmental Justice in India: Incidence of Air Pollution from Coal-Fired Power Plants," Ecological Economics, Elsevier, vol. 176(C).
    2. Dino, Giovanna Antonella & Mehta, Neha & Rossetti, Piergiorgio & Ajmone-Marsan, Franco & De Luca, Domenico Antonio, 2018. "Sustainable approach towards extractive waste management: Two case studies from Italy," Resources Policy, Elsevier, vol. 59(C), pages 33-43.
    3. Moffat, Kieren & Zhang, Airong, 2014. "The paths to social licence to operate: An integrative model explaining community acceptance of mining," Resources Policy, Elsevier, vol. 39(C), pages 61-70.
    4. Vilaça, A.S.I. & Simão, L. & Montedo, O.R.K. & Novaes de Oliveira, A.P. & Raupp-Pereira, F., 2022. "Waste valorization of iron ore tailings in Brazil: Assessment metrics from a circular economy perspective," Resources Policy, Elsevier, vol. 75(C).
    5. Anjali Thomas Bohlken, 2018. "Targeting Ordinary Voters or Political Elites? Why Pork Is Distributed Along Partisan Lines in India," American Journal of Political Science, John Wiley & Sons, vol. 62(4), pages 796-812, October.
    6. Gedam, Vidyadhar V. & Raut, Rakesh D. & Lopes de Sousa Jabbour, Ana Beatriz & Agrawal, Nishant, 2021. "Moving the circular economy forward in the mining industry: Challenges to closed-loop in an emerging economy," Resources Policy, Elsevier, vol. 74(C).
    7. Jiskani, Izhar Mithal & Cai, Qingxiang & Zhou, Wei & Ali Shah, Syed Ahsan, 2021. "Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production," Resources Policy, Elsevier, vol. 71(C).
    8. Upadhyay, Arvind & Laing, Tim & Kumar, Vikas & Dora, Manoj, 2021. "Exploring barriers and drivers to the implementation of circular economy practices in the mining industry," Resources Policy, Elsevier, vol. 72(C).
    9. Li, Huilong & Wei, Xinyuan & Gao, Xinyu, 2021. "Objectives setting and instruments selection of circular economy policy in China's mining industry: A textual analysis," Resources Policy, Elsevier, vol. 74(C).
    10. Chomba Kolala & Bridget Bwalya Umar, 2019. "National benefits, local costs? Local residents' views on environmental and social effects of large‐scale mining in Chingola, Zambia," Natural Resources Forum, Blackwell Publishing, vol. 43(4), pages 205-217, November.
    11. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    12. Sam Asher & Paul Novosad, 2017. "Politics and Local Economic Growth: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 9(1), pages 229-273, January.
    13. Sang-Bing Tsai & Min-Fang Chien & Youzhi Xue & Lei Li & Xiaodong Jiang & Quan Chen & Jie Zhou & Lei Wang, 2015. "Using the Fuzzy DEMATEL to Determine Environmental Performance: A Case of Printed Circuit Board Industry in Taiwan," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathivathanan, Deepak & Mathiyazhagan, K. & Khorana, Sangeeta & Rana, Nripendra P. & Arora, Bimal, 2022. "Drivers of circular economy for small and medium enterprises: Case study on the Indian state of Tamil Nadu," Journal of Business Research, Elsevier, vol. 149(C), pages 997-1015.
    2. Diana Méndez & Fredy Guzmán-Martínez & Mauricio Acosta & Luis Collahuazo & Danilo Ibarra & Luis Lalangui & Samantha Jiménez-Oyola, 2022. "Use of Tailings as a Substitute for Sand in Concrete Blocks Production: Gravimetric Mining Wastes as a Case Study," Sustainability, MDPI, vol. 14(23), pages 1-14, December.
    3. Oksana Marinina & Natalia Kirsanova & Marina Nevskaya, 2022. "Circular Economy Models in Industry: Developing a Conceptual Framework," Energies, MDPI, vol. 15(24), pages 1-21, December.
    4. Li, Yongbo & Barrueta Pinto, Mark Christhian & Kumar, D. Thresh, 2023. "Analyzing sustainability indicator for Chinese mining sector," Resources Policy, Elsevier, vol. 80(C).
    5. Jandieri, Gigo, 2022. "A generalized model for assessing and intensifying the recycling of metal-bearing industrial waste: A new approach to the resource policy of manganese industry in Georgia," Resources Policy, Elsevier, vol. 75(C).
    6. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2022. "Selection of Open-Pit Mining and Technical System’s Sustainable Development Strategies Based on MCDM," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    7. Luthra, Sunil & Mangla, Sachin Kumar & Sarkis, Joseph & Tseng, Ming-Lang, 2022. "Resources melioration and the circular economy: Sustainability potentials for mineral, mining and extraction sector in emerging economies," Resources Policy, Elsevier, vol. 77(C).
    8. Lidija Đurđevac Ignjatović & Vesna Krstić & Vlastimir Radonjanin & Violeta Jovanović & Mirjana Malešev & Dragan Ignjatović & Vanja Đurđevac, 2022. "Application of Cement Paste in Mining Works, Environmental Protection, and the Sustainable Development Goals in the Mining Industry," Sustainability, MDPI, vol. 14(13), pages 1-13, June.
    9. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    10. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    11. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    12. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    13. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    14. Anders Kjelsrud & Kristin Vikan Sjurgard, 2022. "Public Work and Private Violence," Journal of Development Studies, Taylor & Francis Journals, vol. 58(9), pages 1791-1806, September.
    15. Thushyanthan Baskaran & Sonia Bhalotra & Brian Min & Yogesh Uppal, 2018. "Women legislators and economic performance," WIDER Working Paper Series wp-2018-47, World Institute for Development Economic Research (UNU-WIDER).
    16. Danny Zhao‐Xiang Huang, 2022. "An integrated theory of the firm approach to environmental, social and governance performance," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(S1), pages 1567-1598, April.
    17. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    18. Abbas Keramati & Fatemeh Shapouri, 2016. "Multidimensional appraisal of customer relationship management: integrating balanced scorecard and multi criteria decision making approaches," Information Systems and e-Business Management, Springer, vol. 14(2), pages 217-251, May.
    19. Deanna Kemp & John R. Owen, 2022. "Corporate social irresponsibility, hostile organisations and global resource extraction," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(5), pages 1816-1824, September.
    20. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722003488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.