IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v75y2022ics0301420721004700.html
   My bibliography  Save this article

A generalized model for assessing and intensifying the recycling of metal-bearing industrial waste: A new approach to the resource policy of manganese industry in Georgia

Author

Listed:
  • Jandieri, Gigo

Abstract

A generalized model for assessing the overall, techno-economic-ecological efficiency of recycling metal-bearing technogeneous resources has been developed, based on a mathematical model for analyzing the break-even point, specially improved for this purpose. An algorithm for theoretical calculations has been compiled, which also incorporates a sequence of techno-organizational operations for maximizing the efficiency of the recycling system. As a particular case, an example of assessing the effectiveness and the possibility of intensifying recycling of manufacturing waste of the manganese industry of Georgia was considered. It is shown that the intensification of the internal industrial recycling of manganese-bearing wastes is associated with the need for their preliminary treatment, bringing to the condition necessary for break-even processing. Through theoretical-computational analysis of the recycling efficiency index (REI), it is determined that in the case of pyrometallurgical processing, the condition of break-even is the presence of manganese in the recycled raw material in the amount not less than 24%. In the case of hydrometallurgical processing, this threshold is reduced up to 7%. Consequently, resources that satisfy these conditions or can satisfy them after pretreatment should be classified as suitable for recycling and included in the special state register of metal-bearing technogenic deposits. Only that part of industrial waste, in which it is technically impossible or economically unprofitable to provide the specified threshold concentrations, can be disposed of in other industries. The proposed approach to assessing and intensifying the efficiency of recycling will make it possible to significantly expand the resource base of metallurgical production in Georgia. Herewith, on average, the degree of beneficial use of manganese will be increased by 45–50%. Depending on the quality of currently consumed manganese concentrates (Mn 48-28%) the degree of reduction of their consumption rate will reach 30–60%. This will extend the life cycle of the Chiatura manganese mine by 25–30 years. Harmful anthropogenic impact on the environment will be reduced by 3.4–3.5 times.

Suggested Citation

  • Jandieri, Gigo, 2022. "A generalized model for assessing and intensifying the recycling of metal-bearing industrial waste: A new approach to the resource policy of manganese industry in Georgia," Resources Policy, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721004700
    DOI: 10.1016/j.resourpol.2021.102462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721004700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sam Mitra, 2019. "Depletion, technology, and productivity growth in the metallic minerals industry," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(1), pages 19-37, April.
    2. Dino, Giovanna Antonella & Mehta, Neha & Rossetti, Piergiorgio & Ajmone-Marsan, Franco & De Luca, Domenico Antonio, 2018. "Sustainable approach towards extractive waste management: Two case studies from Italy," Resources Policy, Elsevier, vol. 59(C), pages 33-43.
    3. Upadhyay, Arvind & Laing, Tim & Kumar, Vikas & Dora, Manoj, 2021. "Exploring barriers and drivers to the implementation of circular economy practices in the mining industry," Resources Policy, Elsevier, vol. 72(C).
    4. Collins, Benjamin C. & Kumral, Mustafa, 2020. "Game theory for analyzing and improving environmental management in the mining industry," Resources Policy, Elsevier, vol. 69(C).
    5. Yolandi Schoeman & Paul Oberholster & Vernon Somerset, 2021. "A Zero-Waste Multi-Criteria Decision-Support Model for the Iron and Steel Industry in Developing Countries: A Case Study," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    6. Garbarino, Elena & Orveillon, Glenn & Saveyn, Hans G.M., 2020. "Management of waste from extractive industries: The new European reference document on the Best Available Techniques," Resources Policy, Elsevier, vol. 69(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yıldız, Taşkın Deniz & Güner, Mehmet Oğuz & Kural, Orhan, 2024. "Effects of EU-Compliant mining waste regulation on Turkish mining sector: A review of characterization, classification, storage, management, recovery of mineral wastes," Resources Policy, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yıldız, Taşkın Deniz & Güner, Mehmet Oğuz & Kural, Orhan, 2024. "Effects of EU-Compliant mining waste regulation on Turkish mining sector: A review of characterization, classification, storage, management, recovery of mineral wastes," Resources Policy, Elsevier, vol. 90(C).
    2. António Mateus & Luís Martins, 2021. "Building a mineral-based value chain in Europe: the balance between social acceptance and secure supply," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(2), pages 239-261, July.
    3. Upadhyay, Saurabh, 2022. "Drivers for sustainable mining waste management – A mixed-method study on the Indian Mining Industry," Resources Policy, Elsevier, vol. 79(C).
    4. Luthra, Sunil & Mangla, Sachin Kumar & Sarkis, Joseph & Tseng, Ming-Lang, 2022. "Resources melioration and the circular economy: Sustainability potentials for mineral, mining and extraction sector in emerging economies," Resources Policy, Elsevier, vol. 77(C).
    5. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    6. Nesticò, Antonio & D’Ambrosio, Gianni & Ghisellini, Patrizia & Maselli, Gabriella & Ulgiati, Sergio, 2024. "Environmental reclamation of limestone mining sites in Italy: Financial evaluation, challenges and proposals for sustainable development," Resources Policy, Elsevier, vol. 89(C).
    7. Weiser, Annika & Bickel, Manuel W. & Kümmerer, Klaus & Lang, Daniel J., 2020. "Towards a more sustainable metal use – Lessons learned from national strategy documents," Resources Policy, Elsevier, vol. 68(C).
    8. Oksana Marinina & Natalia Kirsanova & Marina Nevskaya, 2022. "Circular Economy Models in Industry: Developing a Conceptual Framework," Energies, MDPI, vol. 15(24), pages 1-21, December.
    9. Li, Yongbo & Barrueta Pinto, Mark Christhian & Kumar, D. Thresh, 2023. "Analyzing sustainability indicator for Chinese mining sector," Resources Policy, Elsevier, vol. 80(C).
    10. Dino, Giovanna Antonella & Cavallo, Alessandro & Faraudello, Alessandra & Piercarlo, Rossi & Mancini, Susanna, 2021. "Raw materials supply: Kaolin and quartz from ore deposits and recycling activities. The example of the Monte Bracco area (Piedmont, Northern Italy)," Resources Policy, Elsevier, vol. 74(C).
    11. Lu, Qing & Fang, Huaxin, 2024. "Promoting low-carbon development in Yangtze River Delta area in China through the lens of decarbonization of industrial gas producers: A case study based on evolutionary game and Lotka-Volterra models," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
    12. Farrukh, Amna & Mathrani, Sanjay & Sajjad, Aymen, 2023. "Green-lean-six sigma practices and supporting factors for transitioning towards circular economy: A natural resource and intellectual capital-based view," Resources Policy, Elsevier, vol. 84(C).
    13. Gilbert Silvius & Aydan Ismayilova & Vicente Sales-Vivó & Micol Costi, 2021. "Exploring Barriers for Circularity in the EU Furniture Industry," Sustainability, MDPI, vol. 13(19), pages 1-25, October.
    14. Deiana, Claudio & Giua, Ludovica, 2023. "This site is closed! The effect of decommissioning mining waste facilities on mortality in the long run," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    15. Abbasi, Kashif Raza & Adedoyin, Festus Fatai & Abbas, Jaffar & Hussain, Khadim, 2021. "The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation," Renewable Energy, Elsevier, vol. 180(C), pages 1439-1450.
    16. Alessandro Cavallo & Giovanna Antonella Dino, 2022. "Extractive Waste as a Resource: Quartz, Feldspars, and Rare Earth Elements from Gneiss Quarries of the Verbano-Cusio-Ossola Province (Piedmont, Northern Italy)," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    17. Mathivathanan, Deepak & Mathiyazhagan, K. & Khorana, Sangeeta & Rana, Nripendra P. & Arora, Bimal, 2022. "Drivers of circular economy for small and medium enterprises: Case study on the Indian state of Tamil Nadu," Journal of Business Research, Elsevier, vol. 149(C), pages 997-1015.
    18. Osei, Vivian & Bai, Chunguang & Asante-Darko, Disraeli & Quayson, Matthew, 2023. "Evaluating the barriers and drivers of adopting circular economy for improving sustainability in the mining industry," Resources Policy, Elsevier, vol. 86(PB).
    19. Zauresh Atakhanova, 2021. "Support services in the extractive industries and the role of innovation," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 141-150, April.
    20. Shuying Li & Guoping Tu, 2022. "Probabilistic Linguistic Matrix Game Based on Fuzzy Envelope and Prospect Theory with Its Application," Mathematics, MDPI, vol. 10(7), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721004700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.