IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v51y2017icp94-99.html
   My bibliography  Save this article

Support of mining investment choice decisions with the use of multi-criteria method

Author

Listed:
  • Sobczyk, Eugeniusz J.
  • Kicki, Jerzy
  • Sobczyk, Wiktoria
  • Szuwarzyński, Marek

Abstract

The article presents the use of Analytic Hierarchy Process (AHP) method for the support of decisions regarding the choice of mining investment. The mining investment, as understood in the analysis conducted in the article is an acquisition of a plant mining zinc and lead ore together with the processing plant producing concentrates of these metals as well as the deposits potentially viable for mining. The subject of analysis consisted of 11 polymetallic ore deposits with different degrees of utilization and mining infrastructure which could be a subject of investment activities in Serbia, Kosovo, Montenegro and Macedonia.

Suggested Citation

  • Sobczyk, Eugeniusz J. & Kicki, Jerzy & Sobczyk, Wiktoria & Szuwarzyński, Marek, 2017. "Support of mining investment choice decisions with the use of multi-criteria method," Resources Policy, Elsevier, vol. 51(C), pages 94-99.
  • Handle: RePEc:eee:jrpoli:v:51:y:2017:i:c:p:94-99
    DOI: 10.1016/j.resourpol.2016.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420716303348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2016.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    2. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabela Jonek-Kowalska & Marian Turek, 2017. "Dependence of Total Production Costs on Production and Infrastructure Parameters in the Polish Hard Coal Mining Industry," Energies, MDPI, vol. 10(10), pages 1-22, September.
    2. Rahimdel, Mohammad Javad & Noferesti, Hossein, 2020. "Investment preferences of Iran's mineral extraction sector with a focus on the productivity of the energy consumption, water and labor force," Resources Policy, Elsevier, vol. 67(C).
    3. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2022. "Selection of Open-Pit Mining and Technical System’s Sustainable Development Strategies Based on MCDM," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    4. Jian Min & Jiaojiao Zhu & Jian-Bo Yang, 2020. "The Risk Monitoring of the Financial Ecological Environment in Chinese Outward Foreign Direct Investment Based on a Complex Network," Sustainability, MDPI, vol. 12(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    2. Lucas, Rochelle Irene & Promentilla, Michael Angelo & Ubando, Aristotle & Tan, Raymond Girard & Aviso, Kathleen & Yu, Krista Danielle, 2017. "An AHP-based evaluation method for teacher training workshop on information and communication technology," Evaluation and Program Planning, Elsevier, vol. 63(C), pages 93-100.
    3. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    4. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    5. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    6. Rahimdel, Mohammad Javad & Noferesti, Hossein, 2020. "Investment preferences of Iran's mineral extraction sector with a focus on the productivity of the energy consumption, water and labor force," Resources Policy, Elsevier, vol. 67(C).
    7. Virginia Racioppi & Gabriella Marcarelli & Massimo Squillante, 2015. "Modelling a sustainable requalification problem by analytic hierarchy process," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1661-1677, July.
    8. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    9. Elena Carrara & Rebecca Ciavarella & Stefania Boglietti & Martina Carra & Giulio Maternini & Benedetto Barabino, 2021. "Identifying and Selecting Key Sustainable Parameters for the Monitoring of e-Powered Micro Personal Mobility Vehicles. Evidence from Italy," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    10. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Nei Yoshihiro Soma & Carlos Eduardo Sanches da Silva, 2021. "MCDM-Based R&D Project Selection: A Systematic Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    11. Dinulescu Ruxandra & Dobrin Cosmin, 2022. "Applying the fuzzy analytical hierarchy process for classifying and prioritizing healthcare quality attributes," Management & Marketing, Sciendo, vol. 17(1), pages 15-40, March.
    12. Behnoosh Matani & Babak Shirazi & Javad Soltanzadeh, 2019. "F-MaMcDm: Sustainable Green-Based Hydrogen Production Technology Roadmap Using Fuzzy Multi-Aspect Multi-Criteria Decision-Making," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-32, December.
    13. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    14. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    15. Antonopoulos, I.-S. & Perkoulidis, G. & Logothetis, D. & Karkanias, C., 2014. "Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 149-159.
    16. Talaei, Alireza & Ahadi, Mohammad Sadegh & Maghsoudy, Soroush, 2014. "Climate friendly technology transfer in the energy sector: A case study of Iran," Energy Policy, Elsevier, vol. 64(C), pages 349-363.
    17. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    18. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    19. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    20. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:51:y:2017:i:c:p:94-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.