IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v90y2020ics0305048318301774.html
   My bibliography  Save this article

An inventory control policy for liquefied natural gas as a transportation fuel

Author

Listed:
  • Lopez Alvarez, Jose A.
  • Buijs, Paul
  • Kilic, Onur A.
  • Vis, Iris F.A.

Abstract

In this paper, we study a novel stochastic inventory management problem that arises in storage and refueling facilities for Liquefied Natural Gas (LNG) as a transportation fuel. In this inventory problem, the physio-chemical properties of LNG play a key role in the design of inventory policies. These properties are: (1) LNG suffers from both quantity decay and quality deterioration and (2) the quality of on-hand LNG can be upgraded by mixing it with higher-quality LNG. Given that LNG quality can be upgraded, an inventory control policy for this problem needs to consider the removal of LNG as a decision variable. We model and solve the problem by means of a Markov Decision Process (MDP) and study the structural characteristics of the optimal policy. The insights obtained in the analysis of the optimal policy are translated into a simple, though effective, inventory control policy in which actions (i.e., replenishment and/or removal) are driven by both the quality and the quantity of the inventories. We assess the performance of our policy by means of a numerical study and show that it performs close to optimal in many numerical instances. The main conclusion of our study is that it is important to take quality into consideration when design inventory control policies for LNG, and that the most effective way to cope with quality issues in an LNG inventory system involves both the removal and the replenishment of inventories.

Suggested Citation

  • Lopez Alvarez, Jose A. & Buijs, Paul & Kilic, Onur A. & Vis, Iris F.A., 2020. "An inventory control policy for liquefied natural gas as a transportation fuel," Omega, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:jomega:v:90:y:2020:i:c:s0305048318301774
    DOI: 10.1016/j.omega.2018.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048318301774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    2. Wu, Jiang & Chang, Chun-Tao & Teng, Jinn-Tsair & Lai, Kuei-Kuei, 2017. "Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date," International Journal of Production Economics, Elsevier, vol. 193(C), pages 343-351.
    3. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    4. Steven Nahmias, 2011. "Perishable Inventory Systems," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-7999-5, September.
    5. Henrik Andersson & Marielle Christiansen & Guy Desaulniers, 2016. "A new decomposition algorithm for a liquefied natural gas inventory routing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 564-578, January.
    6. Jokinen, Raine & Pettersson, Frank & Saxén, Henrik, 2015. "An MILP model for optimization of a small-scale LNG supply chain along a coastline," Applied Energy, Elsevier, vol. 138(C), pages 423-431.
    7. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    8. Wang, Wan-Chih & Teng, Jinn-Tsair & Lou, Kuo-Ren, 2014. "Seller’s optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime," European Journal of Operational Research, Elsevier, vol. 232(2), pages 315-321.
    9. S M H Molana & H Davoudpour & S Minner, 2012. "An (r, nQ) inventory model for packaged deteriorating products with compound Poisson demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1499-1507, November.
    10. Arvind Rajan & Richard Rakesh, 1992. "Dynamic Pricing and Ordering Decisions by a Monopolist," Management Science, INFORMS, vol. 38(2), pages 240-262, February.
    11. Roar Grønhaug & Marielle Christiansen & Guy Desaulniers & Jacques Desrosiers, 2010. "A Branch-and-Price Method for a Liquefied Natural Gas Inventory Routing Problem," Transportation Science, INFORMS, vol. 44(3), pages 400-415, August.
    12. Cai, Xiaoqiang & Chen, Jian & Xiao, Yongbo & Xu, Xiaolin & Yu, Gang, 2013. "Fresh-product supply chain management with logistics outsourcing," Omega, Elsevier, vol. 41(4), pages 752-765.
    13. Biswajit Sarkar & Sharmila Saren & Leopoldo Cárdenas-Barrón, 2015. "An inventory model with trade-credit policy and variable deterioration for fixed lifetime products," Annals of Operations Research, Springer, vol. 229(1), pages 677-702, June.
    14. Chen, Jing & Dong, Ming & Rong, Ying & Yang, Liang, 2018. "Dynamic pricing for deteriorating products with menu cost," Omega, Elsevier, vol. 75(C), pages 13-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Visentin, Andrea & Prestwich, Steven & Rossi, Roberto & Tarim, S. Armagan, 2021. "Computing optimal (R,s,S) policy parameters by a hybrid of branch-and-bound and stochastic dynamic programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 91-99.
    2. Szymon Kuczyński & Mariusz Łaciak & Adam Szurlej & Tomasz Włodek, 2020. "Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement," Energies, MDPI, vol. 13(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    2. Tai, Allen H. & Xie, Yue & He, Wanhua & Ching, Wai-Ki, 2019. "Joint inspection and inventory control for deteriorating items with random maximum lifetime," International Journal of Production Economics, Elsevier, vol. 207(C), pages 144-162.
    3. Beullens, Patrick & Ghiami, Yousef, 2022. "Waste reduction in the supply chain of a deteriorating food item – Impact of supply structure on retailer performance," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1017-1034.
    4. Ghiami, Yousef & Demir, Emrah & Van Woensel, Tom & Christiansen, Marielle & Laporte, Gilbert, 2019. "A deteriorating inventory routing problem for an inland liquefied natural gas distribution network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 45-67.
    5. N. Saranya & A. Shophia Lawrence, 2019. "A stochastic inventory system with replacement of perishable items," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 563-582, June.
    6. Chang, Chun-Tao & Ouyang, Liang-Yuh & Teng, Jinn-Tsair & Lai, Kuei-Kuei & Cárdenas-Barrón, Leopoldo Eduardo, 2019. "Manufacturer's pricing and lot-sizing decisions for perishable goods under various payment terms by a discounted cash flow analysis," International Journal of Production Economics, Elsevier, vol. 218(C), pages 83-95.
    7. Madhukar Nagare & Pankaj Dutta & Pravin Suryawanshi, 2020. "Optimal procurement and discount pricing for single-period non-instantaneous deteriorating products with promotional efforts," Operational Research, Springer, vol. 20(1), pages 89-117, March.
    8. Ehsan Ahmadi & Dale T. Masel & Seth Hostetler & Reza Maihami & Iman Ghalehkhondabi, 2020. "A centralized stochastic inventory control model for perishable products considering age-dependent purchase price and lead time," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 231-269, April.
    9. Qingren He & Shuting Li & Fei Xu & Wanhua Qiu, 2022. "Deep-Processing Service and Pricing Decisions for Fresh Products with the Rate of Deterioration," Mathematics, MDPI, vol. 10(5), pages 1-19, February.
    10. Ruihai Li & Jinn-Tsair Teng & Yingfei Zheng, 2019. "Optimal credit term, order quantity and selling price for perishable products when demand depends on selling price, expiration date, and credit period," Annals of Operations Research, Springer, vol. 280(1), pages 377-405, September.
    11. Jake Clarkson & Michael A. Voelkel & Anna‐Lena Sachs & Ulrich W. Thonemann, 2023. "The periodic review model with independent age‐dependent lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 813-828, March.
    12. Yue Xie & Allen H. Tai & Wai-Ki Ching & Yong-Hong Kuo & Na Song, 2021. "Joint inspection and inventory control for deteriorating items with time-dependent demand and deteriorating rate," Annals of Operations Research, Springer, vol. 300(1), pages 225-265, May.
    13. van Sambeeck, J.H.J. & van Brummelen, S.P.J. & van Dijk, N.M. & Janssen, M.P., 2022. "Optimal blood issuing by comprehensive matching," European Journal of Operational Research, Elsevier, vol. 296(1), pages 240-253.
    14. Yan Shi & Zhiyong Zhang & Sunil Tiwari & Zhiwen Tao, 2022. "Retailer's optimal strategy for a perishable product with increasing demand under various payment schemes," Annals of Operations Research, Springer, vol. 315(2), pages 899-929, August.
    15. V. Radhamani & B. Sivakumar & G. Arivarignan, 2022. "A Comparative Study on Replenishment Policies for Perishable Inventory System with Service Facility and Multiple Server Vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 229-265, March.
    16. Wang, Kai & Ding, Peiqi & Zhao, Ruiqing, 2021. "Strategic credit sales to express retail under asymmetric default risk and stochastic market demand," Omega, Elsevier, vol. 101(C).
    17. Wu, Jiang & Chang, Chun-Tao & Teng, Jinn-Tsair & Lai, Kuei-Kuei, 2017. "Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date," International Journal of Production Economics, Elsevier, vol. 193(C), pages 343-351.
    18. Janssen, Larissa & Diabat, Ali & Sauer, Jürgen & Herrmann, Frank, 2018. "A stochastic micro-periodic age-based inventory replenishment policy for perishable goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 445-465.
    19. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    20. Li, Ruihai & Chan, Ya-Lan & Chang, Chun-Tao & Cárdenas-Barrón, Leopoldo Eduardo, 2017. "Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis," International Journal of Production Economics, Elsevier, vol. 193(C), pages 578-589.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:90:y:2020:i:c:s0305048318301774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.