IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v28y2020i1d10.1007_s11750-019-00533-1.html
   My bibliography  Save this article

A centralized stochastic inventory control model for perishable products considering age-dependent purchase price and lead time

Author

Listed:
  • Ehsan Ahmadi

    (Our Lady of the Lake University)

  • Dale T. Masel

    (Ohio University)

  • Seth Hostetler

    (Geisinger Health System)

  • Reza Maihami

    (Our Lady of the Lake University)

  • Iman Ghalehkhondabi

    (Our Lady of the Lake University)

Abstract

In this paper, we present a stochastic multi-period multi-echelon $$ \left( {s, S} \right) $$s,S periodic inventory control model for perishable products in a healthcare environment. We consider age-dependent purchase price, order lead time, and allow for backorder. The model is inspired by a real case where a regional health system operates multiple hospitals in addition to managing a central warehouse. The warehouse centralizes the purchasing of the products and then distributes them among hospitals while demand for products in each hospital is uncertain. We formulate the problem as a stochastic mixed-integer linear programming model and study two purchasing strategies. The first and traditional strategy assumes that the warehouse only orders fresh products, i.e., products with the latest expiry date and most expensive, referred to as purchasing constant remaining life (CRL). The second strategy considers a discount function with a lower purchase price for products with a shorter remaining life, referred to as different remaining life (DRL). The designed models are naturally complex and intractable to obtain optimal solutions by an analytical approach for large instances of the problem. Thus, we developed a genetic algorithm to solve the problem and benchmarked its performance against an exact method. We also verified the results of the stochastic models through simulation. Extensive sensitivity analysis is also conducted to investigate the behaviors of both CRL and DRL strategies about the risk of product shortage, product expiration and the total cost imposed on the system.

Suggested Citation

  • Ehsan Ahmadi & Dale T. Masel & Seth Hostetler & Reza Maihami & Iman Ghalehkhondabi, 2020. "A centralized stochastic inventory control model for perishable products considering age-dependent purchase price and lead time," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 231-269, April.
  • Handle: RePEc:spr:topjnl:v:28:y:2020:i:1:d:10.1007_s11750-019-00533-1
    DOI: 10.1007/s11750-019-00533-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-019-00533-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-019-00533-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Liming & Yang, Tao, 1999. "An (s,[punctuation space]S) random lifetime inventory model with a positive lead time," European Journal of Operational Research, Elsevier, vol. 113(1), pages 52-63, February.
    2. Nasr, Walid W. & Maddah, Bacel, 2015. "Continuous (s, S) policy with MMPP correlated demand," European Journal of Operational Research, Elsevier, vol. 246(3), pages 874-885.
    3. Chiu, Huan Neng, 1995. "An approximation to the continuous review inventory model with perishable items and lead times," European Journal of Operational Research, Elsevier, vol. 87(1), pages 93-108, November.
    4. Onur Kaya & Sajjad Rahimi Ghahroodi, 2018. "Inventory control and pricing for perishable products under age and price dependent stochastic demand," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 1-35, August.
    5. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    6. Kouki, Chaaben & Jemaï, Zied & Minner, Stefan, 2015. "A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time," International Journal of Production Economics, Elsevier, vol. 168(C), pages 143-157.
    7. Pahl, Julia & Voß, Stefan, 2014. "Integrating deterioration and lifetime constraints in production and supply chain planning: A survey," European Journal of Operational Research, Elsevier, vol. 238(3), pages 654-674.
    8. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    9. Williams, Craig L. & Eddy Patuwo, B., 2004. "Analysis of the effect of various unit costs on the optimal incoming quantity in a perishable inventory model," European Journal of Operational Research, Elsevier, vol. 156(1), pages 140-147, July.
    10. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    11. Haji, Rasoul & Neghab, Mohammadali Pirayesh & Baboli, Armand, 2009. "Introducing a new ordering policy in a two-echelon inventory system with Poisson demand," International Journal of Production Economics, Elsevier, vol. 117(1), pages 212-218, January.
    12. Schmitt, Amanda J. & Sun, Siyuan Anthony & Snyder, Lawrence V. & Shen, Zuo-Jun Max, 2015. "Centralization versus decentralization: Risk pooling, risk diversification, and supply chain disruptions," Omega, Elsevier, vol. 52(C), pages 201-212.
    13. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    14. Steven Nahmias, 2011. "Perishable Inventory Systems," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-7999-5, December.
    15. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    16. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    17. Al-Othman, Wafa B.E. & Lababidi, Haitham M.S. & Alatiqi, Imad M. & Al-Shayji, Khawla, 2008. "Supply chain optimization of petroleum organization under uncertainty in market demands and prices," European Journal of Operational Research, Elsevier, vol. 189(3), pages 822-840, September.
    18. Rau, Hsin & Wu, Mei-Ying & Wee, Hui-Ming, 2003. "Integrated inventory model for deteriorating items under a multi-echelon supply chain environment," International Journal of Production Economics, Elsevier, vol. 86(2), pages 155-168, November.
    19. Anita R. Vila-Parrish & Julie Simmons Ivy, 2013. "Managing Supply Critical to Patient Care: An Introduction to Hospital Inventory Management for Pharmaceuticals," International Series in Operations Research & Management Science, in: Brian T. Denton (ed.), Handbook of Healthcare Operations Management, edition 127, chapter 0, pages 447-463, Springer.
    20. Olsson, Fredrik & Tydesjö, Patrik, 2010. "Inventory problems with perishable items: Fixed lifetimes and backlogging," European Journal of Operational Research, Elsevier, vol. 202(1), pages 131-137, April.
    21. Lagodimos, A.G. & Koukoumialos, S., 2008. "Service performance of two-echelon supply chains under linear rationing," International Journal of Production Economics, Elsevier, vol. 112(2), pages 869-884, April.
    22. Reza Maihami & Behrooz Karimi & Seyyed Mohammad Taghi Fatemi Ghomi, 2017. "Effect of two-echelon trade credit on pricing-inventory policy of non-instantaneous deteriorating products with probabilistic demand and deterioration functions," Annals of Operations Research, Springer, vol. 257(1), pages 237-273, October.
    23. Gary D. Eppen, 1979. "Note--Effects of Centralization on Expected Costs in a Multi-Location Newsboy Problem," Management Science, INFORMS, vol. 25(5), pages 498-501, May.
    24. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    25. van Donselaar, Karel H. & Broekmeulen, Rob A.C.M., 2012. "Approximations for the relative outdating of perishable products by combining stochastic modeling, simulation and regression modeling," International Journal of Production Economics, Elsevier, vol. 140(2), pages 660-669.
    26. Johansson, Lina & Olsson, Fredrik, 2018. "Age-based inventory control in a multi-echelon system with emergency replenishments," European Journal of Operational Research, Elsevier, vol. 265(3), pages 951-961.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Ahmadi & Dale T. Masel & Seth Hostetler, 2023. "A Data-Driven Decision-Making Model for Configuring Surgical Trays Based on the Likelihood of Instrument Usages," Mathematics, MDPI, vol. 11(9), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kouki, Chaaben & Jemaï, Zied & Minner, Stefan, 2015. "A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time," International Journal of Production Economics, Elsevier, vol. 168(C), pages 143-157.
    2. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    3. Kouki, Chaaben & Jouini, Oualid, 2015. "On the effect of lifetime variability on the performance of inventory systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 23-34.
    4. Jake Clarkson & Michael A. Voelkel & Anna‐Lena Sachs & Ulrich W. Thonemann, 2023. "The periodic review model with independent age‐dependent lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 813-828, March.
    5. Janssen, Larissa & Diabat, Ali & Sauer, Jürgen & Herrmann, Frank, 2018. "A stochastic micro-periodic age-based inventory replenishment policy for perishable goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 445-465.
    6. Kouki, Chaaben & Babai, M. Zied & Minner, Stefan, 2018. "On the benefit of dual-sourcing in managing perishable inventory," International Journal of Production Economics, Elsevier, vol. 204(C), pages 1-17.
    7. Avinadav, Tal, 2020. "The effect of decision rights allocation on a supply chain of perishable products under a revenue-sharing contract," International Journal of Production Economics, Elsevier, vol. 225(C).
    8. Madhukar Nagare & Pankaj Dutta & Pravin Suryawanshi, 2020. "Optimal procurement and discount pricing for single-period non-instantaneous deteriorating products with promotional efforts," Operational Research, Springer, vol. 20(1), pages 89-117, March.
    9. Muriana, Cinzia, 2016. "An EOQ model for perishable products with fixed shelf life under stochastic demand conditions," European Journal of Operational Research, Elsevier, vol. 255(2), pages 388-396.
    10. Yves Crama & Mahmood Rezaei & Martin Savelsbergh & Tom Van Woensel, 2018. "Stochastic Inventory Routing for Perishable Products," Transportation Science, INFORMS, vol. 52(3), pages 526-546, June.
    11. Dmitry Ivanov & Maxim Rozhkov, 2020. "Coordination of production and ordering policies under capacity disruption and product write-off risk: an analytical study with real-data based simulations of a fast moving consumer goods company," Annals of Operations Research, Springer, vol. 291(1), pages 387-407, August.
    12. N. Saranya & A. Shophia Lawrence, 2019. "A stochastic inventory system with replacement of perishable items," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 563-582, June.
    13. Lopez Alvarez, Jose A. & Buijs, Paul & Kilic, Onur A. & Vis, Iris F.A., 2020. "An inventory control policy for liquefied natural gas as a transportation fuel," Omega, Elsevier, vol. 90(C).
    14. Gorria, Carlos & Lezaun, Mikel & López, F. Javier, 2022. "Performance measures of nonstationary inventory models for perishable products under the EWA policy," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1137-1150.
    15. Broekmeulen, Rob A.C.M. & van Donselaar, Karel H., 2019. "Quantifying the potential to improve on food waste, freshness and sales for perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 209(C), pages 265-273.
    16. Marcio Costa Santos & Agostinho Agra & Michael Poss, 2020. "Robust inventory theory with perishable products," Annals of Operations Research, Springer, vol. 289(2), pages 473-494, June.
    17. van Sambeeck, J.H.J. & van Brummelen, S.P.J. & van Dijk, N.M. & Janssen, M.P., 2022. "Optimal blood issuing by comprehensive matching," European Journal of Operational Research, Elsevier, vol. 296(1), pages 240-253.
    18. Kouki, Chaaben & Legros, Benjamin & Zied Babai, M. & Jouini, Oualid, 2020. "Analysis of base-stock perishable inventory systems with general lifetime and lead-time," European Journal of Operational Research, Elsevier, vol. 287(3), pages 901-915.
    19. Hansen, Ole & Transchel, Sandra & Friedrich, Hanno, 2023. "Replenishment strategies for lost sales inventory systems of perishables under demand and lead time uncertainty," European Journal of Operational Research, Elsevier, vol. 308(2), pages 661-675.
    20. V. Radhamani & B. Sivakumar & G. Arivarignan, 2022. "A Comparative Study on Replenishment Policies for Perishable Inventory System with Service Facility and Multiple Server Vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 229-265, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:28:y:2020:i:1:d:10.1007_s11750-019-00533-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.