IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i1p240-253.html
   My bibliography  Save this article

Optimal blood issuing by comprehensive matching

Author

Listed:
  • van Sambeeck, J.H.J.
  • van Brummelen, S.P.J.
  • van Dijk, N.M.
  • Janssen, M.P.

Abstract

Mass-scale red blood cell genotyping of donors and transfusion recipients increases the availability of extended antigen matched red blood cell units. Therefore, a new mathematical framework is developed that can be applied for general blood groups (i.e., beyond the ABO, RhD blood groups). It determines which red blood cell units should be issued from inventory, such that requests from hospitals can be satisfied with antigen compatible red blood cell units, shortages for future requests are avoided, and outdating is prevented. The optimization model consists of two steps: a binary vector representation for general blood groups and the formulation of the inventory allocation problem as a minimum cost flow problem. The potential practical performance of the optimization model is evaluated by iterative simulations, based on historical data on supply and demand of red blood cell units in the Netherlands. When including the fourteen clinically most relevant antigens, more than 90% of all requests can be satisfied with antigen identical red blood cell units. Shortages and outdating can be kept restricted and could even be reduced to virtually zero, when only the ABO, RhD blood groups are considered.

Suggested Citation

  • van Sambeeck, J.H.J. & van Brummelen, S.P.J. & van Dijk, N.M. & Janssen, M.P., 2022. "Optimal blood issuing by comprehensive matching," European Journal of Operational Research, Elsevier, vol. 296(1), pages 240-253.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:240-253
    DOI: 10.1016/j.ejor.2021.02.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721001673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.02.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    2. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    3. Rene Haijema & Nico M. van Dijk & Jan Wal, 2017. "Blood Platelet Inventory Management," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. van Dijk (ed.), Markov Decision Processes in Practice, chapter 0, pages 293-317, Springer.
    4. Itir Z. Karaesmen & Alan Scheller–Wolf & Borga Deniz, 2011. "Managing Perishable and Aging Inventories: Review and Future Research Directions," International Series in Operations Research & Management Science, in: Karl G. Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 393-436, Springer.
    5. Duan, Qinglin & Liao, T. Warren, 2013. "A new age-based replenishment policy for supply chain inventory optimization of highly perishable products," International Journal of Production Economics, Elsevier, vol. 145(2), pages 658-671.
    6. Vahid Sarhangian & Hossein Abouee-Mehrizi & Opher Baron & Oded Berman, 2018. "Threshold-Based Allocation Policies for Inventory Management of Red Blood Cells," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 347-362, May.
    7. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    8. Haijema, René & van Dijk, Nico & van der Wal, Jan & Smit Sibinga, Cees, 2009. "Blood platelet production with breaks: optimization by SDP and simulation," International Journal of Production Economics, Elsevier, vol. 121(2), pages 464-473, October.
    9. Anna Nagurney & Amir Masoumi & Min Yu, 2012. "Supply chain network operations management of a blood banking system with cost and risk minimization," Computational Management Science, Springer, vol. 9(2), pages 205-231, May.
    10. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    11. Steven Nahmias, 2011. "Perishable Inventory Systems," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-7999-5, December.
    12. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    13. van Dijk, Nico M. & van der Sluis, Erik, 2006. "Check-in computation and optimization by simulation and IP in combination," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1152-1168, June.
    14. Dillon, Mary & Oliveira, Fabricio & Abbasi, Babak, 2017. "A two-stage stochastic programming model for inventory management in the blood supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 27-41.
    15. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    16. Yenho Chung & Feryal Erhun, 2013. "Designing supply contracts for perishable goods with two periods of shelf life," IISE Transactions, Taylor & Francis Journals, vol. 45(1), pages 53-67.
    17. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    18. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dillon, Mary & Oliveira, Fabricio & Abbasi, Babak, 2017. "A two-stage stochastic programming model for inventory management in the blood supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 27-41.
    2. Jake Clarkson & Michael A. Voelkel & Anna‐Lena Sachs & Ulrich W. Thonemann, 2023. "The periodic review model with independent age‐dependent lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 813-828, March.
    3. Yuan Xu & Joseph Szmerekovsky, 2022. "A multi-product multi-period stochastic model for a blood supply chain considering blood substitution and demand uncertainty," Health Care Management Science, Springer, vol. 25(3), pages 441-459, September.
    4. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    5. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    6. Ana Margarida Araújo & Daniel Santos & Inês Marques & Ana Barbosa-Povoa, 2020. "Blood supply chain: a two-stage approach for tactical and operational planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1023-1053, December.
    7. Dehghani, Maryam & Abbasi, Babak, 2018. "An age-based lateral-transshipment policy for perishable items," International Journal of Production Economics, Elsevier, vol. 198(C), pages 93-103.
    8. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
    9. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    10. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    11. Gorria, Carlos & Lezaun, Mikel & López, F. Javier, 2022. "Performance measures of nonstationary inventory models for perishable products under the EWA policy," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1137-1150.
    12. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    13. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    14. Masoumi, Amir H. & Yu, Min & Nagurney, Anna, 2017. "Mergers and acquisitions in blood banking systems: A supply chain network approach," International Journal of Production Economics, Elsevier, vol. 193(C), pages 406-421.
    15. Kees, M. Celeste & Bandoni, J. Alberto & Moreno, M. Susana, 2022. "A multi-period fuzzy optimization strategy for managing a centralized blood supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    16. Anand Paul & Tharanga Rajapakshe & Suman Mallik, 2019. "Socially Optimal Contracting between a Regional Blood Bank and Hospitals," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 908-932, April.
    17. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    18. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Gilani Larimi, Niloofar & Yaghoubi, Saeed & Hosseini-Motlagh, Seyyed-Mahdi, 2019. "Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    20. Dillon, Mary & Vauhkonen, Ilmari & Arvas, Mikko & Ihalainen, Jarkko & Vilkkumaa, Eeva & Oliveira, Fabricio, 2023. "Supporting platelet inventory management decisions: What is the effect of extending platelets’ shelf life?," European Journal of Operational Research, Elsevier, vol. 310(2), pages 640-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:240-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.