IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v193y2017icp406-421.html
   My bibliography  Save this article

Mergers and acquisitions in blood banking systems: A supply chain network approach

Author

Listed:
  • Masoumi, Amir H.
  • Yu, Min
  • Nagurney, Anna

Abstract

Blood banking systems in the United States over the past decade have been faced with a volatile demand for blood, specifically, a decrease in demand for red blood cells, for a variety of reasons. This change in the blood supply chain landscape, accompanied by an increasing emphasis on cost efficiency, is a driver of Mergers & Acquisitions between blood banks. In this paper, we first present supply chain network optimization pre- and post-merger models. The models handle perishability of the life-saving product of blood, include both operational and discarding costs of waste, capture the uncertainty associated with the demand points, as well as the expected total blood supply shortage cost and the total discarding cost at demand points. They also incorporate capacities on the links. Their solution yields the optimal path and link flows plus the frequencies of activities associated with blood collection, shipment, testing and processing, storage, and distribution, and incurred total costs. We provide a cost efficiency (synergy) measure associated with a merger or acquisition in the blood banking industry, as well as measures capturing the expected supply shortage and surplus. The methodological framework and its applicability are then illustrated via a large-scale blood supply chain network example inspired by a pending merger in the real-world in both status quo and disaster scenarios.

Suggested Citation

  • Masoumi, Amir H. & Yu, Min & Nagurney, Anna, 2017. "Mergers and acquisitions in blood banking systems: A supply chain network approach," International Journal of Production Economics, Elsevier, vol. 193(C), pages 406-421.
  • Handle: RePEc:eee:proeco:v:193:y:2017:i:c:p:406-421
    DOI: 10.1016/j.ijpe.2017.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527317302475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2017.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amorim, P. & Günther, H.-O. & Almada-Lobo, B., 2012. "Multi-objective integrated production and distribution planning of perishable products," International Journal of Production Economics, Elsevier, vol. 138(1), pages 89-101.
    2. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    3. Anna Nagurney & Amir Masoumi & Min Yu, 2012. "Supply chain network operations management of a blood banking system with cost and risk minimization," Computational Management Science, Springer, vol. 9(2), pages 205-231, May.
    4. Nagurney, Anna, 2009. "A system-optimization perspective for supply chain network integration: The horizontal merger case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 1-15, January.
    5. Anna Nagurney & Min Yu & Jonas Floden, 2013. "Supply chain network sustainability under competition and frequencies of activities from production to distribution," Computational Management Science, Springer, vol. 10(4), pages 397-422, December.
    6. Haijema, Rene, 2014. "Optimal ordering, issuance and disposal policies for inventory management of perishable products," International Journal of Production Economics, Elsevier, vol. 157(C), pages 158-169.
    7. Steven Nahmias, 2011. "Perishable Inventory Systems," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-7999-5, December.
    8. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    9. Anna Nagurney, 2015. "Design of Sustainable Supply Chains for Sustainable Cities," Environment and Planning B, , vol. 42(1), pages 40-57, February.
    10. Dillon, Mary & Oliveira, Fabricio & Abbasi, Babak, 2017. "A two-stage stochastic programming model for inventory management in the blood supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 27-41.
    11. Awi Federgruen & Gregory Prastacos & Paul H. Zipkin, 1986. "An Allocation and Distribution Model for Perishable Products," Operations Research, INFORMS, vol. 34(1), pages 75-82, February.
    12. Anna Nagurney, 2010. "Formulation and analysis of horizontal mergers among oligopolistic firms with insights into the merger paradox: a supply chain network perspective," Computational Management Science, Springer, vol. 7(4), pages 377-406, October.
    13. Çömez-Dolgan, Nagihan & Tanyeri, Başak, 2015. "Inventory performance with pooling: Evidence from mergers and acquisitions," International Journal of Production Economics, Elsevier, vol. 168(C), pages 331-339.
    14. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Alcoba, Alejandro G. & Haijema, René, 2016. "Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 238-246.
    15. Anna Nagurney & Amir H. Masoumi, 2012. "Supply Chain Network Design of a Sustainable Blood Banking System," International Series in Operations Research & Management Science, in: Tonya Boone & Vaidyanathan Jayaraman & Ram Ganeshan (ed.), Sustainable Supply Chains, edition 127, chapter 0, pages 49-72, Springer.
    16. Nagurney, Anna & Nagurney, Ladimer S., 2012. "Medical nuclear supply chain design: A tractable network model and computational approach," International Journal of Production Economics, Elsevier, vol. 140(2), pages 865-874.
    17. Anna Nagurney & Trisha Woolley, 2010. "Environmental and Cost Synergy in Supply Chain Network Integration in Mergers and Acquisitions," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 57-78, Springer.
    18. Derya A. Jacobs & Murat N. Silan & Barry A. Clemson, 1996. "An Analysis of Alternative Locations and Service Areas of American Red Cross Blood Facilities," Interfaces, INFORMS, vol. 26(3), pages 40-50, June.
    19. Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
    20. Yu, Min & Nagurney, Anna, 2013. "Competitive food supply chain networks with application to fresh produce," European Journal of Operational Research, Elsevier, vol. 224(2), pages 273-282.
    21. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    22. Soo-Haeng Cho, 2014. "Horizontal Mergers in Multitier Decentralized Supply Chains," Management Science, INFORMS, vol. 60(2), pages 356-379, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Margarida Araújo & Daniel Santos & Inês Marques & Ana Barbosa-Povoa, 2020. "Blood supply chain: a two-stage approach for tactical and operational planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1023-1053, December.
    2. Anna Nagurney & Pritha Dutta, 2019. "Supply chain network competition among blood service organizations: a Generalized Nash Equilibrium framework," Annals of Operations Research, Springer, vol. 275(2), pages 551-586, April.
    3. Ma, Peng & Gong, Yeming & Jin, Mingzhou, 2019. "Quality efforts in medical supply chains considering patient benefits," European Journal of Operational Research, Elsevier, vol. 279(3), pages 795-807.
    4. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. Ma, Jun & Nault, Barrie R. & Tu, Yiliu (Paul), 2023. "Customer segmentation, pricing, and lead time decisions: A stochastic-user-equilibrium perspective," International Journal of Production Economics, Elsevier, vol. 264(C).
    6. Nagurney, Anna & Dutta, Pritha, 2019. "Competition for blood donations," Omega, Elsevier, vol. 85(C), pages 103-114.
    7. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani & Jeremy Mattson, 2023. "Robust possibilistic programming to design a closed-loop blood supply chain network considering service-level maximization and lateral resupply," Annals of Operations Research, Springer, vol. 328(1), pages 859-901, September.
    8. Liu, Zugang & Wang, Jia, 2019. "Supply chain network equilibrium with strategic supplier investment: A real options perspective," International Journal of Production Economics, Elsevier, vol. 208(C), pages 184-198.
    9. Peng Ma & Yeming Gong & Mingzhou Jin, 2019. "Quality efforts in medical supply chains considering patient benefits," Post-Print hal-02312386, HAL.
    10. Yuan, Zhennan & Chen, Frank Y. & Yan, Xiaoming & Yu, Yugang, 2020. "Operational implications of yield uncertainty in mergers and acquisitions," International Journal of Production Economics, Elsevier, vol. 219(C), pages 248-258.
    11. Chan, Chi Kin & Zhou, Yan & Wong, Kar Hung, 2018. "A dynamic equilibrium model of the oligopolistic closed-loop supply chain network under uncertain and time-dependent demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 325-354.
    12. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    13. Anna Nagurney & Pritha Dutta, 2021. "A Multiclass, Multiproduct Covid-19 Convalescent Plasma Donor Equilibrium Model," SN Operations Research Forum, Springer, vol. 2(3), pages 1-30, September.
    14. Ali Ala & Morteza Yazdani & Mohsen Ahmadi & Aida Poorianasab & Mahdi Yousefi Nejad Attari, 2023. "An efficient healthcare chain design for resolving the patient scheduling problem: queuing theory and MILP-ASA optimization approach," Annals of Operations Research, Springer, vol. 328(1), pages 3-33, September.
    15. Nagurney, Anna, 2021. "Optimization of supply chain networks with inclusion of labor: Applications to COVID-19 pandemic disruptions," International Journal of Production Economics, Elsevier, vol. 235(C).
    16. Esmaeili, Somayeh & Bashiri, Mahdi & Amiri, Amirhossein, 2023. "An exact criterion space search algorithm for a bi-objective blood collection problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 210-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    2. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    3. Dillon, Mary & Oliveira, Fabricio & Abbasi, Babak, 2017. "A two-stage stochastic programming model for inventory management in the blood supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 27-41.
    4. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    5. van Sambeeck, J.H.J. & van Brummelen, S.P.J. & van Dijk, N.M. & Janssen, M.P., 2022. "Optimal blood issuing by comprehensive matching," European Journal of Operational Research, Elsevier, vol. 296(1), pages 240-253.
    6. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
    7. Ramezanian, Reza & Behboodi, Zahra, 2017. "Blood supply chain network design under uncertainties in supply and demand considering social aspects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 69-82.
    8. Nagurney, Anna & Dutta, Pritha, 2019. "Competition for blood donations," Omega, Elsevier, vol. 85(C), pages 103-114.
    9. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    10. Ana Margarida Araújo & Daniel Santos & Inês Marques & Ana Barbosa-Povoa, 2020. "Blood supply chain: a two-stage approach for tactical and operational planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1023-1053, December.
    11. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    12. Gilani Larimi, Niloofar & Yaghoubi, Saeed & Hosseini-Motlagh, Seyyed-Mahdi, 2019. "Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    13. Faraz Salehi & Masoud Mahootchi & Seyed Mohammad Moattar Husseini, 2019. "Developing a robust stochastic model for designing a blood supply chain network in a crisis: a possible earthquake in Tehran," Annals of Operations Research, Springer, vol. 283(1), pages 679-703, December.
    14. Soheyl Khalilpourazari & Alireza Arshadi Khamseh, 2019. "Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application," Annals of Operations Research, Springer, vol. 283(1), pages 355-393, December.
    15. Anna Nagurney & Min Yu & Jonas Floden, 2013. "Supply chain network sustainability under competition and frequencies of activities from production to distribution," Computational Management Science, Springer, vol. 10(4), pages 397-422, December.
    16. Dillon, Mary & Vauhkonen, Ilmari & Arvas, Mikko & Ihalainen, Jarkko & Vilkkumaa, Eeva & Oliveira, Fabricio, 2023. "Supporting platelet inventory management decisions: What is the effect of extending platelets’ shelf life?," European Journal of Operational Research, Elsevier, vol. 310(2), pages 640-654.
    17. Meneses, Maria & Santos, Daniel & Barbosa-Póvoa, Ana, 2023. "Modelling the Blood Supply Chain," European Journal of Operational Research, Elsevier, vol. 307(2), pages 499-518.
    18. Anna Nagurney & Pritha Dutta, 2019. "Supply chain network competition among blood service organizations: a Generalized Nash Equilibrium framework," Annals of Operations Research, Springer, vol. 275(2), pages 551-586, April.
    19. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    20. Anna Nagurney & Amir Masoumi & Min Yu, 2012. "Supply chain network operations management of a blood banking system with cost and risk minimization," Computational Management Science, Springer, vol. 9(2), pages 205-231, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:193:y:2017:i:c:p:406-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.