IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i1d10.1007_s10479-023-05287-5.html
   My bibliography  Save this article

An efficient healthcare chain design for resolving the patient scheduling problem: queuing theory and MILP-ASA optimization approach

Author

Listed:
  • Ali Ala

    (Shanghai Jiao Tong University)

  • Morteza Yazdani

    (Universidad Internacional de Valencia-VIU)

  • Mohsen Ahmadi

    (Urmia University of Technology)

  • Aida Poorianasab

    (Islamic Azad University)

  • Mahdi Yousefi Nejad Attari

    (Islamic Azad University)

Abstract

The efficiency evaluation of the healthcare chain network becomes crucial as healthcare systems seek to enhance patient satisfaction and reduce costs during the health check. This study proposes a mixed-integer linear programming model that resolves the patient selection problem for influential diagnosis-related groups treatments by considering the approximate solution approach. This research's objective is to apply the minimum response time for the arrival time of two types of patients (regular and urgent) by presenting the Poisson distributed and queuing theory. Second, a process for resolving the optimal solutions for waiting time and the total number of patient arrival times to the hospital to achieve the target at a minimum supply chain cost. Furthermore, based on the obtained results applied for the patients with a first-come-first-serve policy and to meet overall arrival time on time, the percentage of patients waiting time at the healthcare center is reduced to under 30% for the emergency patient. At the same time, the percentage of regular patients who do not receive the treatment service time earlier and do not refer to the hospital punctuality is increased to more than 70%. Those theories determined that more healthcare costs and dissatisfaction for regular patients, while in contrast, for emergency patients, are decreased waiting time and healthcare cost services.

Suggested Citation

  • Ali Ala & Morteza Yazdani & Mohsen Ahmadi & Aida Poorianasab & Mahdi Yousefi Nejad Attari, 2023. "An efficient healthcare chain design for resolving the patient scheduling problem: queuing theory and MILP-ASA optimization approach," Annals of Operations Research, Springer, vol. 328(1), pages 3-33, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-023-05287-5
    DOI: 10.1007/s10479-023-05287-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05287-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05287-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masoumi, Amir H. & Yu, Min & Nagurney, Anna, 2017. "Mergers and acquisitions in blood banking systems: A supply chain network approach," International Journal of Production Economics, Elsevier, vol. 193(C), pages 406-421.
    2. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    3. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    4. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    5. B. S. S. Onggo & N. C. Proudlove & S. A. D’Ambrogio & A. Calabrese & Stefania Bisogno & N. Levialdi Ghiron, 2018. "A BPMN extension to support discrete-event simulation for healthcare applications: an explicit representation of queues, attributes and data-driven decision points," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(5), pages 788-802, May.
    6. Mahsa Pouraliakbari-Mamaghani & Mohammad Mohammadi & Alireza Arshadi-Khamseh & Bahman Naderi, 2021. "A bi-objective robust possibilistic programming model for blood supply chain design in the mass casualty event response phase: a M/M/1/K queuing model with real world application," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 42(2), pages 229-275.
    7. Nagurney, Anna, 2021. "Optimization of supply chain networks with inclusion of labor: Applications to COVID-19 pandemic disruptions," International Journal of Production Economics, Elsevier, vol. 235(C).
    8. Chaithanya Bandi & Nikolaos Trichakis & Phebe Vayanos, 2019. "Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems," Management Science, INFORMS, vol. 65(1), pages 152-187, January.
    9. Nagurney, Anna & Nagurney, Ladimer S., 2012. "Medical nuclear supply chain design: A tractable network model and computational approach," International Journal of Production Economics, Elsevier, vol. 140(2), pages 865-874.
    10. Ma, Jun & Zhang, Ding & Dong, June & Tu, Yiliu, 2020. "A supply chain network economic model with time-based competition," European Journal of Operational Research, Elsevier, vol. 280(3), pages 889-908.
    11. Riccardo Aldrighetti & Ilenia Zennaro & Serena Finco & Daria Battini, 2019. "Healthcare Supply Chain Simulation with Disruption Considerations: A Case Study from Northern Italy," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(1), pages 81-102, December.
    12. V. K. Manupati & Tobias Schoenherr & M. Ramkumar & Stephan M. Wagner & Sai Krishna Pabba & R. Inder Raj Singh, 2020. "A blockchain-based approach for a multi-echelon sustainable supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2222-2241, April.
    13. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    14. Haddadsisakht, Ali & Ryan, Sarah M., 2018. "Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax," International Journal of Production Economics, Elsevier, vol. 195(C), pages 118-131.
    15. Soheyl Khalilpourazari & Alireza Arshadi Khamseh, 2019. "Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application," Annals of Operations Research, Springer, vol. 283(1), pages 355-393, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Nagurney & Pritha Dutta, 2021. "A Multiclass, Multiproduct Covid-19 Convalescent Plasma Donor Equilibrium Model," SN Operations Research Forum, Springer, vol. 2(3), pages 1-30, September.
    2. Esmaeili, Somayeh & Bashiri, Mahdi & Amiri, Amirhossein, 2023. "An exact criterion space search algorithm for a bi-objective blood collection problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 210-232.
    3. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani & Jeremy Mattson, 2023. "Robust possibilistic programming to design a closed-loop blood supply chain network considering service-level maximization and lateral resupply," Annals of Operations Research, Springer, vol. 328(1), pages 859-901, September.
    5. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Javid Ghahremani-Nahr & Ramez Kian & Ehsan Sabet & Vahid Akbari, 2022. "A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach," Operational Research, Springer, vol. 22(5), pages 4685-4723, November.
    7. Gilani Larimi, Niloofar & Azhdari, Abolghasem & Ghousi, Rouzbeh & Du, Bo, 2022. "Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    8. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    9. Chua, Geoffrey A. & Senga, Juan Ramon L., 2022. "Blood supply interventions during disasters: Efficiency measures and strategies to mitigate volatility," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    10. Peng Ma & Yeming Gong & Mingzhou Jin, 2019. "Quality efforts in medical supply chains considering patient benefits," Post-Print hal-02312386, HAL.
    11. Elmira Farrokhizadeh & Seyed Amin Seyfi-Shishavan & Sule Itir Satoglu, 2022. "Blood supply planning during natural disasters under uncertainty: a novel bi-objective model and an application for red crescent," Annals of Operations Research, Springer, vol. 319(1), pages 73-113, December.
    12. Soheyl Khalilpourazari & Hossein Hashemi Doulabi, 2023. "A flexible robust model for blood supply chain network design problem," Annals of Operations Research, Springer, vol. 328(1), pages 701-726, September.
    13. Ma, Peng & Gong, Yeming & Jin, Mingzhou, 2019. "Quality efforts in medical supply chains considering patient benefits," European Journal of Operational Research, Elsevier, vol. 279(3), pages 795-807.
    14. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    15. Samia Zaoui & Clovis Foguem & Dieudonné Tchuente & Samuel Fosso-Wamba & Bernard Kamsu-Foguem, 2023. "The Viability of Supply Chains with Interpretable Learning Systems: The Case of COVID-19 Vaccine Deliveries," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 633-657, December.
    16. Sohrabi, Mahnaz & Zandieh, Mostafa & Shokouhifar, Mohammad, 2023. "Sustainable inventory management in blood banks considering health equity using a combined metaheuristic-based robust fuzzy stochastic programming," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    17. Kees, M. Celeste & Bandoni, J. Alberto & Moreno, M. Susana, 2022. "A multi-period fuzzy optimization strategy for managing a centralized blood supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    18. Abdorrrahman Haeri & Seyyed-Mahdi Hosseini-Motlagh & Mohammad Reza Ghatreh Samani & Marziehsadat Rezaei, 2022. "An integrated socially responsible-efficient approach toward health service network design," Annals of Operations Research, Springer, vol. 319(1), pages 463-516, December.
    19. Mehdi Alizadeh & Mir Saman Pishvaee & Hamed Jahani & Mohammad Mahdi Paydar & Ahmad Makui, 2023. "Viable healthcare supply chain network design for a pandemic," Annals of Operations Research, Springer, vol. 328(1), pages 35-73, September.
    20. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-023-05287-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.